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Abstract: 

The Human Genome Project completed in 2003 gave us a reference genome for the human 

species. Before the project was completed, it was believed that the primary function of DNA was 

to code for protein. However, it was discovered that only 2% of the genome consists of regions 

that code for proteins. The remaining regions of the genome are either functional regions that 

regulate the coding regions or junk DNA regions that do nothing. The distinction between these 

two types of regions is not completely clear. Evidence of purifying selection, the decrease in 

frequency of deleterious mutations, is likely a sign that a region is functional. The goal of this 

project was to find evidence of purifying selection in newly acquired regions in the human 

genome that are hypothesized to be functional. The mean Derived Allele Frequency of the 

featured regions was compared to that of control regions to determine the likelihood of selection. 
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I. Introduction 

The Human Genome Project was formalized in 1987 with the goal of furthering the 

understanding of the Human Genome (1). Research began in 1990, and the project was projected 

to take 15 years (2). However, in 2003, 2 years earlier than planned, a working draft of the 

genome was published, and the project was announced complete. 

The project sequenced the complete human genome for the first time, including all 21 

autosomes and 2 sex chromosomes. Nevertheless, it still left much to be discovered in terms of 

the biochemical mechanisms behind the functions of our genetic sequences. 

Genome 

The human genome can generally be divided into three categories: genes, regulatory 

regions, and junk regions. 

Genes are regions of the genome that code for protein. On a textbook level, DNA is 

transcribed to mRNA, which is similar to DNA except that it has the base Uracil in place of 

Thymine (see Figure 1). The mRNA is processed and then translated into a protein on the surface 

of a ribosome. The specific proteins that are synthesized then influence the phenotype that is 

expressed. 

However, genes only make up only 2% of the genome, and the processes of transcription 

and translation must be regulated in some way. Regulatory regions are sequences in the genome 

that can help in the process of gene regulation. 
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Figure 1: Transcription and translation in a cell (3). 

One of the textbook examples of a regulatory region in organisms is the Lac Operon 

present in E. coli (see Figure 2). The Lac Operon regulates the transcription of Lactase, an 

enzyme used to break up Lactose. Normally, a repressor protein is translated, which binds to the 

region where the genes for coding Lactase are located. This prevents the transcription factor 

from binding and beginning translation of Lactase. However, when Lactose is present, it binds to 

the repressor protein and changes its shape. The repressor protein is no longer completely bound 

to the Lactase coding sites, which allows the transcription factor to bind, causing Lactase to be 

expressed. The Lactase then breaks down the Lactose, decreasing the Lactose levels. As these 

levels decrease, there is fewer Lactose molecules present to bind to the repressor proteins thus 

the repressor proteins are free to bind with the Lactase gene’s Promoter region once again. This 

is particularly remarkable, since it is an example of an efficient self-regulating system. 
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Figure 2: Lactose regulation by the Lac Operon (4). 

 Junk regions, in contrast to the previously described regions, neither code for protein nor 

serve any regulatory purpose. These regions are neither harmful nor beneficial, so there is no 

reason for them to be selected against. They are passed under neutral selection over evolutionary 

time. 

 Due to a distinct evolutionary signature for genes, we have come a long way in 

identifying gene regions in the genome. However, both junk regions and regulatory regions can 

be difficult to identify. Also, the exact process by which regulatory regions regulate genes is 

often complicated not always known. Luckily, in the field of computational biology, we can 

utilize genome-wide analysis techniques to computationally identify regions theorized to have 

some purpose, and experimentalists can later verify these findings. In this report, we describe a 

computational method by which we can provide further evidence that certain groups of annotated 
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functional regions are not only functional but also evolutionarily preserved. This method can 

then be generalized to provide evidence of human-specific selection. 

Selection 

 From a genetic standpoint, natural selection acts on populations to reduce the prevalence 

of deleterious alleles and increase the frequency of beneficial alleles. For example, the allele or 

alleles leading to the giraffes having an enlarged neck likely enabled those giraffes to reach 

leaves on tall trees that were out of reach for other giraffes. They likely survived at a higher rate 

as a result, while many shorter-necked giraffes may have died out, due to competition for food, 

and the longer necked giraffes were able to pass on their genetic material. In a human- specific 

example, the allele responsible for sickle-cell anemia also contributes to immunity for the 

Malaria virus. As a result of a single point mutation, a slightly defective protein is created, which 

makes it hard for the virus to latch onto blood cells. 

 Two types of natural selection are positive selection and purifying selection. Generally, 

when people think of natural selection and “survival of the fittest,” they think of positive 

selection, which involves the increase in frequency of those alleles that are beneficial to a 

population. However, positive selection is generally not as common as negative selection, or 

purifying selection, which is the decrease in frequency of deleterious alleles. Purifying selection 

is likely more common than positive selection because after years of evolution in a population, a 

delicate equilibrium has been reached, resulting in complex organisms. Therefore, in such 

complicated organisms, a random mutation is more likely harmful than beneficial. Purifying 

selection plays an important role in maintaining the equilibrium.  
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Significance of Selection 

 Evidence of natural selection would suggest that a point or region of the genome is 

important. If a region is not important, then there will be no advantage of having one variant over 

another. The choice of alleles is random, and over time, the alleles would be equally distributed 

in frequency. However, if a region is important, then it is likely that only certain variants of the 

region would provide the desired function. This signal would manifest itself in an unequal 

distribution frequency of certain variants. 

Measuring Selection 

 Selective pressure can be approximated at a specific locus by using the allele frequency. 

At a specific locus, usually there will only be two possible alleles that show up in the population 

at an observable frequency. The ancestral allele is then defined as the allele present in the 

ancestral population and the derived allele is defined as the second allele, the allele different 

from the ancestral allele. In the case of humans, the ancestral allele was given by the 

Chimpanzee genome and already annotated in the 1000 genomes data. 

 The average derived allele frequency (DAF) of common single nucleotide 

polymorphisms (SNPs) in humans is an appropriate measure of selection for regions of the 

genome for two reasons. Firstly, the majority of the human genome is identical across all humans 

(5). Secondly, the few genetic differences can take the form of SNPs, deletions, or insertions, but 

due to the biological phenomenon of linkage disequilibrium, we know that the frequency of 

nearby variants is tightly linked. Therefore, the frequency of any variant in the genome can be 

approximated by averaging the frequencies of the common SNPs that fall nearby. Therefore, we 
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will estimate and aggregate the selective pressure on a region by averaging the DAFs of SNPs in 

that region. 

Coverage 

In the process of sequencing whole genomes, the result for each nucleotide position must 

be obtained more than once for accuracy, as sequencing errors happen at a non-negligible 

frequency. Therefore, many short reads that overlap each other are obtained and pieced together 

to generate the complete sequence. 

 The read depth or coverage gives a measure of confidence in the resulting sequence by 

providing the average number of times a base pair was covered over all the reads. It can be 

calculated by the formula:  

coverage=(number of reads)*(average length of read)/(total length of region sequenced) 

Conventionally, coverage is calculated on a per-chromosome basis, since chromosomes are 

naturally separated units of the genomes. The average coverage of a region can be calculated 

simply by taking the average of the coverage scores of each SNP falling in the region. 

Rare SNPs, which are defined as SNPs with low DAF, are unlikely to appear when the 

coverage is low. Therefore, we control for coverage such that regions with equal coverage are 

eventually compared. 

Regions 

This project will look for evidence of purifying selection in exonic regions vs random 

intergenic regions to test the general pipeline. These regions were downloaded from the gencode 
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site. Regulatory regions, such as miRNA target regions, will then be investigated for evidence of 

purifying selection, although the pipeline is general enough to accommodate any type of regions. 

We are especially interested in miRNA target regions and other regulatory regions because 

evidence of selection in these regions would confirm their importance. 

A micro RNA (miRNA) is a short non-coding RNA molecule that aids in gene 

regulation. It may bind to regions of the mRNA to prevent translation from occurring (6). The 

miRNAs usually bind to target regions in the 3’UTRs following the genes in which they regulate. 

II. Methods 

 These methods were adapted from the methods described in the journal paper Evidence 

of Abundant Purifying Selection in Humans for Recently Acquired Regulatory Functions (7). 

The general method, which can be adapted to testing other regions, is described as follows. A file 

containing regions is first downloaded. Next, randomized regions of the same length as the 

control regions are generated. Then, SNPs are overlapped with these regions to generate a 

measurement of coverage and DAF for each region. Finally, the plot of the regions is analyzed 

and evaluated for signs of selection. 

 To validate the pipeline, exonic regions were compared with intergenic regions. It has 

been previously shown that exonic regions are functional and exhibit signs of selective pressure; 

therefore, we expect them to have a lower mean DAF than comparable random intergenic 

regions. The pipeline will be discussed in more depth using exonic regions as an example of 

regions given as input to the pipeline. 
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Table 1: VCF file first five lines (8). 

#CHROM POS ID REF ALT QUAL FILTER INFO 

1 10291 .

. 

C T 7981 Truth 

Sensitivity 

Tranche 

99.94to 

100.00 

AC=301;AF=0.3195;AN=942; 

BaseQRankSum=5.549; 

CalledBy=UM;DP=11556;DS;Dels=0.00; 

FS=110.558; 

HRun=0;HaplotypeScore=4.4214; 

InbreedingCoeff=0.0257; 

MQ=14.84;MQ0=7941; 

MQRankSum=-2.209;QD=2.58; 

ReadPosRankSum=0.639;SB=-3277.82; 

VQSLOD=-18.5766;pop=ALL 

1 10303 .

. 

C T 477.62 Truth 

Sensitivity 

Tranche 

99.94to 

100.00 

AC=52;AF=0.0570;AN=912; 

BaseQRankSum=-5.482; 

CalledBy=UM;DP=9636;DS; 

Dels=0.00;FS=13.179; 

HRun=0;HaplotypeScore=4.7756; 

InbreedingCoeff=-0.0594;MQ=17.24; 

MQ0=5844;MQRankSum=2.401;QD=0.71; 

ReadPosRankSum=2.903; 

SB=-412.62;VQSLOD=-17.3319;pop=ALL 

1 10309 .

. 

C T 380.57 Truth 

Sensitivity 

Tranche 

99.94to 

100.00 

AC=49;AF=0.0503;AN=974; 

BaseQRankSum=-7.661; 

CalledBy=UM;DP=9655;DS;Dels=0.00; 

FS=0.892; 

HRun=0;HaplotypeScore=4.9360; 

InbreedingCoeff=0.0973; 

MQ=18.11;MQ0=5494; 

MQRankSum=2.293;QD=0.45; 

ReadPosRankSum=2.613;SB=-308.12; 

VQSLOD=-17.4737;pop=ALL 

1 10315 .

. 

C T 992.9 Truth 

Sensitivity 

Tranche 

99.94to 

100.00 

AC=103;AF=0.08759;AN=1176; 

BaseQRankSum=-6.800; 

CalledBy=UM;DP=10311;DS;Dels=0.00; 

FS=1.029; 

HRun=0;HaplotypeScore=4.6195; 

InbreedingCoeff=-0.0567; 

MQ=19.02;MQ0=5227;MQRankSum=1.588; 

QD=0.66;ReadPosRankSum=8.991; 

SB=-538.39;VQSLOD=-14.5919; 

pop=ALL 

1 10457 .

. 

A C 222.14 Truth 

Sensitivity 

Tranche 

99.94to 

100.00 

 AC=20;AF=0.01312;AN=1524; 
BaseQRankSum=2.411;CalledBy=NCBI;DP=13055; 
DS;Dels=0.00;FS=32.763; 
HRun=0;HaplotypeScore=2.2778; 
InbreedingCoeff=0.0801;MQ=22.83;MQ0=6854; 
MQRankSum=2.240;QD=0.58; 
ReadPosRankSum=-0.375;SB=-107.65; 
VQSLOD=-6.3002;pop=ALL 

 

A file in VCF format containing variants was downloaded from the 1000 genomes 

project (8) (see Table 1). Only the CHROM, POS, REF, ALT, and INFO fields were needed. 

CHROM denotes the chromosome number, POS the position, REF the reference allele, ALT the 

alternate allele. Information for DP, AN, and AF could be found in the INFO field. 
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Table 2: Output from VCFtools: 

CHROM POS REF ALT AA AF AN DP 

1 10291 C T ? 0.3195 942 11556 

1 10303 C T ? 0.057 912 9636 

1 10309 C T ? 0.0503 974 9655 

1 10315 C T ? 0.0875 1176 10311 

1 10457 A C ? 0.0131 1524 13055 

1 10469 C G ? 0.0397 1232 3320 

1 10492 C T ? 0.1044 1216 3035 

1 10575 C G ? 0.003 334 741 

1 10583 G A ? 0.1979 960 2337 

 

The information was parsed using VCFtools (9) (see Table 2).  The majority of variants 

were SNPs. Variants such as insertions and deletions were removed. Next, lines containing more 

than one reference allele or more than one alternate allele were removed. Only SNPs remained 

after conducting these processes. When the ancestral allele was not given in the VCF file, the 

allele that had a higher frequency was defined as the ancestral allele. Most often the reference 

allele corresponded with the ancestral allele. The coverage of each SNP was also calculated by 

dividing the total depth across all samples (DP) by the total number of samples (AN). Coverage 

=DP/AN 

 The SNP file with all the necessary information was converted to bed format. The chr tag 

was added to all chromosome numbers and the position. Next, the chromosome start coordinate 

was defined as the SNP position minus one and the end coordinate was defined as the given 

coordinate. In this way, the file was converted from the 1-based system used in VCF files to the 

0-based system used in bed files. Then the file was sorted by the chromosome and start position 

columns. The chromosome column was sorted alphabetically and the position column was sorted 

numerically using the unix sort command. 
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Region files were downloaded from publicly available databases. Two files were 

downloaded. One file contained feature regions and the other file contained regions from which 

the control regions would be generated. For example, if a file containing exons was given as one 

input file, another file containing intergenic regions could be used as the second input file. If the 

files were not already in bed format, they were parsed and converted into bed format. 

Coordinates in the downloaded files were converted to the 0-based system by subtracting one 

from the start position if they used a 1-based system. Duplicate regions, which were defined as 

regions with the same chromosome number, start position, and end position, were deleted.  

Often, the background region file should consist of regions which contain all the input 

regions. For example, one may use 3’UTRs or the entire genome as the background for miRNA 

targets. This makes it easier to generate random regions because then it is guaranteed that each 

input region is smaller than at least one region in the set of background regions, and it is always 

possible to generate a random region. To make sure the feature regions were indeed contained 

within the background regions they were intersected using bedintersect. 

Random intergenic regions were then created based on the feature regions. We generated 

a random region of the same length as an input region, and if the random region was located in 

the intergenic regions defined by the gencode genes (10), it was added to the growing random 

region file. Otherwise, the region was dropped and a new random region would be continually 

generated until it fit in the set of background regions. This process was continued until we had 

identified matching intergenic regions for all the feature regions. Both files, the file containing 

feature regions and the file containing control regions, were then overlapped with the modified 

VCF file containing SNPs from the 1000 genomes project using bedtools (11). A mean DAF and 
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mean coverage was calculated for each region by averaging the DAFs and coverages of the SNPs 

falling in the region. The feature and control regions together were then sorted by coverage. The 

bottom 5% and top 5% of regions were dropped. 

The regions were then separated back into the feature vs random groups and binned by 

interval. The range of coverage was split into 20 equal intervals, and the regions in each bin were 

averaged by coverage and DAF. The resulting 20 points were then plotted DAF on the y-axis vs. 

coverage on the x-axis with error bars showing the standard error of the mean DAF in the bin. 

Standard error of the mean was calculated as the standard deviation of the bin divided by the 

square root of the number of points in the bin. 
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IV. Results 

Exons vs. Intergenic Regions 

Exonic Regions      Intergenic Regions 

Bin Coverage DAF stderr 
 

Bin Coverage DAF stderr 

1 1.97666 0.0492288 0.001519184 
 

1 1.97946 0.043142 0.001570726 

2 2.04481 0.0475484 0.001333624 
 

2 2.04475 0.0501358 0.00178861 

3 2.11226 0.0462967 0.001153468 
 

3 2.11312 0.04534 0.001221285 

4 2.17909 0.0442211 0.001106696 
 

4 2.18104 0.044563 0.000980751 

5 2.24618 0.0418876 0.000965436 
 

5 2.24701 0.0465953 0.000946051 

6 2.31371 0.0407717 0.000917273 
 

6 2.31404 0.0458057 0.000920642 

7 2.38086 0.0400819 0.000835317 
 

7 2.38165 0.0421392 0.000698095 

8 2.44853 0.0379022 0.000733518 
 

8 2.44849 0.0454995 0.000674879 

9 2.5153 0.0363079 0.000690937 
 

9 2.51526 0.0456842 0.00062616 

10 2.58273 0.0353169 0.000637098 
 

10 2.58248 0.0436786 0.000569706 

11 2.64949 0.0353796 0.000622351 
 

11 2.64953 0.0422026 0.000563664 

12 2.71665 0.0340089 0.000608221 
 

12 2.71688 0.0402675 0.000531972 

13 2.78362 0.0338626 0.000624697 
 

13 2.78365 0.040859 0.000523689 

14 2.85043 0.0333319 0.00062171 
 

14 2.85066 0.0394748 0.000520314 

15 2.91767 0.031954 0.000632653 
 

15 2.91831 0.0393941 0.000531411 

16 2.98459 0.0325116 0.000709274 
 

16 2.98463 0.0394173 0.000589611 

17 3.05158 0.0322544 0.000751919 
 

17 3.05214 0.0375162 0.000697381 

18 3.11814 0.0313508 0.000893723 
 

18 3.11896 0.0357543 0.000813551 

19 3.18579 0.0316952 0.001031152 
 

19 3.18578 0.0365253 0.000932766 

20 3.25283 0.0326999 0.001325898 
 

20 3.25257 0.0360121 0.001061836 
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Figure 9: Binned regions for exonic regions (black) and intergenic  

regions (red) with standard error of the mean bars. 

Figure 9 shows that the exonic regions generally have a lower DAF than that of 

randomized intergenic regions. However, the signal is more ambiguous when the coverage is low 

around 2. For randomized regions with very low coverage, the DAF is lower than that of the next 

bin. 
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miRNA vs. 3’UTR 

miRNA      3’UTRs 

Bin Coverage DAF stderr 
 

Bin Coverage DAF stderr 

1 2.03081 0.036165 0.002433 
 

1 2.03189 0.051575 0.002283 

2 2.10278 0.034213 0.001938 
 

2 2.10037 0.049371 0.001622 

3 2.17172 0.035 0.00162 
 

3 2.1729 0.055679 0.001816 

4 2.24169 0.044015 0.001789 
 

4 2.24211 0.039538 0.001393 

5 2.31064 0.033232 0.001271 
 

5 2.31166 0.041165 0.001417 

6 2.38074 0.039829 0.001411 
 

6 2.38186 0.045509 0.001434 

7 2.45179 0.045212 0.001408 
 

7 2.4501 0.046647 0.001283 

8 2.52028 0.032867 0.001039 
 

8 2.52057 0.039703 0.001104 

9 2.59001 0.036771 0.001155 
 

9 2.59107 0.047035 0.001095 

10 2.66064 0.036656 0.001136 
 

10 2.66066 0.046401 0.001139 

11 2.72988 0.033642 0.001035 
 

11 2.73003 0.043357 0.001112 

12 2.7998 0.030969 0.001021 
 

12 2.80006 0.033534 0.000907 

13 2.86958 0.032003 0.001038 
 

13 2.8702 0.038344 0.000985 

14 2.93934 0.032827 0.001144 
 

14 2.93895 0.035648 0.001205 

15 3.00857 0.033022 0.001222 
 

15 3.00842 0.040056 0.001199 

16 3.07831 0.034995 0.001455 
 

16 3.07932 0.040329 0.001534 

17 3.14787 0.025568 0.001251 
 

17 3.14699 0.030017 0.001445 

18 3.21743 0.033884 0.001606 
 

18 3.21649 0.033999 0.0016 

19 3.28785 0.024685 0.001766 
 

19 3.28766 0.026761 0.001542 

20 3.35815 0.03137 0.002272 
 

20 3.35871 0.033632 0.002462 
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Figure 10: Binned regions for miRNA target regions (black)  

and random 3’UTRs (red)  

with standard error of the mean bars. 
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V. Discussion 

 The results strongly suggest that the DAF of exonic regions is lower than the DAF of 

general intergenic regions. The cause of this signal is most likely purifying selection, which 

agrees with the intuition that exons are functional. 

 There is a similar signal in the miRNA graph although the signal is not as clear is that in 

the previous test. This suggests that miRNA target sequences are relatively more constrained 

than random regions found within 3’UTRs but the signal is not as clear as in the previous test 

because 3’UTRs themselves may be relatively constrained when compared to regions such as 

intergenic regions. 

 However, the current pipeline does not correct for conservation, which is necessary for 

providing evidence of purifying selection in human-specific regions. Methods for modifying the 

pipeline are discussed in the next section. There is reason to believe that the signal for purifying 

selection would still be clear based on previous work done (7).  
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VI. Further Research 

Because conserved regions generally have a low average DAF already, future work to 

identify human-specific selection would involve first separating the feature regions into 

conserved and unconserved. Regions would be divided into conserved regions and unconserved 

regions based on overlap with siphy elements (17), which are regions computed to have high 

conservation scores. A region would be considered conserved if 90% of the region overlapped 

with a siphy element and all other regions would be considered unconserved. 

 We also plan to extend this approach to other regulatory regions such as 5’UTR stem 

loops and Exonic Splicing Enhancers, as our pipeline is fully generalizable.   

 The 5’ Untranslated Region (5’ UTR) Stem Loop is a region on the 5’ end of DNA which 

sometimes forms a hairpin loop. There has recently been evidence that this region is essential for 

regulating translation of Growth Factor B1 (18).  

 Exonic Splicing Enhancers (ESEs) are sequences that somehow aid the splicing 

machinery in splicing and removing introns. Prior to translation, introns must be removed from 

the mRNA strand. The remaining regions known as exons are then transported to the ribosome to 

become translated into protein. Certain regions may help the splicing mechanism find places to 

delete (19). 

 Progress was also made on packaging the pipeline and making it generally available to 

the research community, so that other researchers may use it to quickly obtain a measurement of 

selection in putative functional regions. Currently the tool is functional, allowing users to run a 
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command to compare selection and generate a plot of the results. However, efforts are being 

made to control for the other factors and make the tool run faster before being released. 
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