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Abstract. In this paper we compute the orbits of the symplectic group Sp2n on partial flag

varieties GL2n/P and on partial flag varieties enhanced by a vector space, C2n ×GL2n/P .

This extends analogous results proved by Matsuki on full flags. The general technique used

in this paper is to take the orbits in the full flag case and determine which orbits remain

distinct when the full flag variety GL2n/B is projected down to the partial flag variety

GL2n/P .

The recent discovery of a connection between abstract algebra and the classical com-

binatorial Robinson-Schensted (RS) correspondence has sparked research on related alge-

braic structures and relationships to new combinatorial bijections, such as the Robinson-

Schensted-Knuth (RSK) correspondence, the “mirabolic” RSK correspondence, and the

“exotic” RS correspondence. We conjecture an exotic RSK correspondence between the or-

bits described in this paper and semistandard bi-tableaux, which would yield an extension

to the exotic RS correspondence found in a paper of Henderson and Trapa.
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1. Introduction

1.1. Background. Group actions are fundamental to representation theory. The group

action of a group G on a set X is a homomorphism from G to the symmetric group of X,

i.e. any element of G corresponds to a permutation of the elements of X. An important

property of a group action is the orbits into which the group action of G divides X. Two

elements x1, x2 ∈ X are in the same orbit iff there exists some g ∈ G such that gx1 = x2.

The relation of x1, x2 being in the same orbit is an equivalence relation; thus, the orbits of

G on X partition X into finitely or infinitely many orbits. In this paper we classify orbits

of Sp2n on GL2n/P and orbits of a fixed-point subgroup of Sp2n on GL2n/P , where Sp2n

denotes the symplectic group and GL2n/P denotes a partial flag variety of type A.

A major motivation for the results of this paper is the classical Robinson-Schensted (RS)

correspondence, which is a combinatorial bijection between the symmetric group Sn (per-

mutations on n elements) and pairs of standard Young tableaux on n boxes of the same

shape. This was discovered independently in different forms by Robinson in 1938 (see [2])

and Schensted in 1961 (see [7]).

Moreover, the Robinson-Schensted correspondence runs much deeper than a simple com-

binatorial bijection. The Bruhat decomposition of a connected reductive group G is the

decomposition of G into double cosets BwB where B is a Borel subgroup of G, W is the

Weyl group of G, and w ∈ W . Alternatively, the orbits of B on G/B are in bijection with

W . In the case where G is GLn, W = Sn and B can be taken as the subgroup of invertible

upper triangular matrices; then the Bruhat decomposition states that every g ∈ GLn can be

written as g = b1wb2 where b1, b2 are invertible and upper triangular and w is a permutation

matrix. In this way the RS correspondence has a natural bijection with the orbits of B on

GLn/B.

The Robinson-Schensted-Knuth (RSK) correspondence is a generalization of the RS cor-

respondence. It extends the RS correspondence to a bijection between non-negative integer
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matrices with entries summing to n and pairs of semistandard Young tableaux on n boxes

of the same shape, where the column sums of the matrix must equal the weight of the first

tableau, and the row sums of the matrix must equal the weight of the second tableau. Note

that this reduces to the standard RS correspondence when the matrices are permutation

matrices, corresponding to Sn, and the semistandard Young tableaux are standard Young

tableaux, corresponding to weights of (1, 1, ..., 1). Whereas the RS correspondence param-

eterizes B-orbits on GLn/B, the RSK correspondence parameterizes P -orbits on GLn/P ,

where P is a parabolic subgroup of GLn.

Spaltenstein discovered that one can recover the RS correspondence by classifying the

irreducible components of the Steinberg variety. The Steinberg variety is a certain subset of

the product of two copies of the flag variety with the cone of nilpotent elements of the Lie

algebra sln, and its irreducible components can be naturally parametrized in two different

ways. A concise treatment is given in Chapter 3 of [1]. Furthermore, this geometric corre-

spondence was generalized by Rosso (2010, see [6]) to the partial flag variety to recover the

full RSK correspondence.

Travkin (2011, see [8]) computed the orbits of B on C2n × GL2n/B and from this found

the mirabolic RSK correspondence, a bijection between decorated permutations (w, β) where

w ∈ Sn and β is a subset of {1, ..., n} restricted by w, and triples (T1, T2, θ) consisting of a

pair of standard Young tableaux and an extra partition restricted by T1 and T2.

Matsuki (2010, see [5]) gave a characterization of the orbits of the symplectic group Sp2n

on C2n×GL2n/B, where GL2n/B is the complete flag variety in C2n. Henderson and Trapa

(2011, see [3]) use this to find an exotic version of the RS correspondence. They give a

bijection between pairs (w, β) as in mirabolic RSK but with w restricted to fixed point-free

involutions, and standard Young bi-tableaux for certain bi-partitions.
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A major inspiration of this work is Rosso’s program [6] to extend Robinson-Schensted-type

correspondences using partial flags. Hence we would like to generalize the exotic Robinson-

Schensted above to one involving semistandard bi-tableaux by extending the work of Matsuki

and Henderson and Trapa to partial flags.

A special case of one of our results is contained in Magyar (see [4]) using the theory of

quiver representations. The results of this paper can be applied to studying certain categories

of representations.

1.2. Main results. In Section 2 we lay out the preliminary definitions and concepts and

state several results of Matsuki, which are heavily used throughout the rest of the paper. In

Section 3 we compute Sp2n-orbits on GL2n/P , the main result being Theorem 3.10. Finally,

in Section 4, we compute Q-orbits on GL2n/P (where Q is a fixed-point subgroup of Sp2n),

the main result being Theorem 4.6, and the orbits of Sp2n on C2n × GL2n/P obtained as a

corollary (Corollary 4.7).

1.3. Acknowledgements. I would like to thank my mentors Vinoth Nandakumar and

Daniel Thompson for teaching me background and guiding me through my research; Ben

Elias, Pavel Etingof, and Slava Gerovitch for supervising the MIT-PRIMES program; and

my parents for their continued support and guidance.
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2. Preliminaries

2.1. Basics. The vector space V = Vn = Cn is the n-dimensional complex vector space. The

general linear group GLn, referred to as G, is the group of invertible linear transformations

on Cn. The span of a set of vectors {v1, ..., vk} is denoted 〈v1, ..., vk〉. A complete flag is a

sequence of subspaces {0 ⊂ V1 ⊂ ... ⊂ Vn} such that dim(Vi) = i for each i. A complete flag

variety is the space of all complete flags. For a fixed basis, the Borel subgroup B ⊂ G is

the group of all invertible linear transformations leaving a chosen complete flag fixed. The

complete flag variety is isomorphic to G/B.

A partial flag of signature (d1, ..., dk), d1 > 0, dk = n, is a sequence of subspaces {0 ⊂

Vd1 ⊂ ... ⊂ Vdk}, dim(Vi) = i for each i. Sometimes we refer to d0, which is 0. A partial

flag variety of signature (d1, ..., dk) is the space of all partial flags with that signature. For a

fixed basis, a parabolic subgroup P of signature (d1, ..., dk) is the group of all invertible linear

transformations leaving a chosen partial flag fixed. Thus B ⊆ P for all parabolics P . The

partial flag variety of signature (d1, ..., dk) is isomorphic to G/P .

The relative position of two flags F = {V1 ⊂ ... ⊂ Vn} and F ′ = {V ′1 ⊂ ... ⊂ V ′n} is defined

as the matrix {dim(Vi ∩ V ′j )}ni,j=0. The action of G on a pair of flags leaves their relative

position fixed, since invertible matrices do not change the dimensions of subspaces.

From here V will be assumed to be even-dimensional, and its dimension will be denoted

2n instead of n.

The symplectic form ω : V ×V → F is a bilinear form on V that satisfies three properties:

• Skew-symmetric: ω(u, v) = −ω(v, u) for all u, v ∈ V .

• Totally isotropic: ω(v, v) = 0 for all v ∈ V .

• Nondegenerate: For all nonzero u ∈ V , ω(u, v) 6= 0 for some v ∈ V .
6



Two vectors u, v are called a symplectic pair if ω(u, v) 6= 0. Otherwise, they are called

perpendicular, and we write u ⊥ v.

For a subspace U ⊆ V , its perpendicular U⊥ ⊆ V is defined as U⊥ : v ∈ V | u ⊥ v

for all u ∈ U . For a flag F = {0 ⊂ Vd1 ⊂ ... ⊂ Vdk}, its perpendicular is defined as

F⊥ = {0 ⊂ V ⊥dk−1
⊂ ... ⊂ V ⊥d1 ⊂ V }.

It is possible to find a symplectic basis on all even-dimensional vector spaces V ; we find

such a basis (e1, ..., e2n) such that ω(ei, e2n+1−i) = 1 for i ≤ n, and we call it the standard

basis for V . The symplectic group Sp2n, referred to as K, is the group of invertible linear

transformations that preserve the symplectic form, that is, the set of all k ∈ GL2n such that

ω(u, v) = ω(ku, kv) for all u, v ∈ V .

Define Q2n = Q as the subgroup of K consisting of symplectic vectors leaving e2n fixed,

i.e. Q = {q ∈ K | qe2n = e2n}.

Define W as 〈e2n〉⊥ = {e2, e3, ..., e2n}.

Often we will refer to the relative position of a flag F with its perpendicular flag F⊥, i.e.

{dim(Vi ∩ V ⊥j )}2ni,j=0. We may refer to this simply as the relative position of F .

2.2. Prior results. We adopt Matsuki’s notation (see [5]) {di,j}2ni,j=0 for the relative position

of a full flag (with its perpendicular), and the derived matrix {ci,j}2ni,j=1 defined by ci,j =

di,j−1 − di,j − di−1,j−1 + di−1,j.

Definition 2.1. Define C2n as the set of 2n by 2n symmetric permutation matrices with

zeros along the main diagonal.

These matrices may be viewed as ways to fully pair 2n elements. They may also be called

fixed point-free involutions.

The following results about K-orbits on G/B were determined by Matsuki (see [5]):
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Proposition 2.2. For every flag F = {0 ⊂ V1 ⊂ ... ⊂ V2n}, there exists an ordered basis

(v1, ..., v2n) of V such that Vi = 〈v1, ..., vi〉 for 1 ≤ i ≤ 2n, which has the additional property

{ω(vi, vj)}2ni,j=1 ∈ C2n.

Theorem 2.3. The orbits of K on G/B are in bijection with C2n.

The following results about Q-orbits on G/B were also determined by Matsuki (see [5]):

Proposition 2.4. For every flag F = {0 ⊂ V1 ⊂ ... ⊂ V2n}, there exists an ordered basis

(v1, ..., v2n) of V such that Vi = 〈v1, ..., vi〉 for 1 ≤ i ≤ 2n, which has the additional properties:

{ω(vi, vj)}2ni,j=1 ∈ C2n and {ω(vi, e2n)}2ni=1 comprises s ones and 2n− s zeros, 1 ≤ s ≤ n.

Theorem 2.5. The orbits of Q on G/B are in bijection with
n⊔

s=1

⊔
∗

C(I(A)), where C(I(A))

is the set of |I(A)| by |I(A)| symmetric permutation matrices {ci,j}i,j∈I(A)
with zeros along the

main diagonal, and the disjoint union ∗ is taken for all partitions {1, ..., 2n} = I(A)tI(X)tI(Y )

such that |I(X)| = |I(Y )| = s.

Corollary 2.6. The orbits of Q on G/B are in bijection with sequences Z1...Z2n of “AXY”

symbols: X symbols, X1...Xs; Y symbols, Y1...Ys; and pairs of A symbols, As+1, As+1, ..., An, An,

such that:

• 1 ≤ s ≤ n.

• The symbol Xi appears before the symbol Xi+1 for all 1 ≤ i ≤ s− 1.

• The symbol Yi appears before the symbol Yi+1 for all 1 ≤ i ≤ s− 1.

• The first Ai symbol appears before the first Ai+1 symbol for all s+ 1 ≤ i ≤ n− 1.

Moreover, any flag in the orbit corresponding to the sequence Z1...Z2n, when represented by

a basis (v1, ..., v2n) described in Proposition 2.4, has the following properties:

• ω(vi, vj) = 1 iff the “AXY” symbols Zi and Zj have the same index; ω(vi, vj) = 0

otherwise.

• ω(vi, e2n) = 1 iff “AXY” symbol Zi is an X symbol; ω(vi, e2n) = 0 otherwise.
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Proposition 2.7. For every orbit of Q on G/B, take from Theorem 2.5 the corresponding

s, partition I(A) t I(X) t I(Y ) of {1, ..., 2n}, and matrix {ci,j}i,j∈I(A)
. There exist unique

subsequences i1 < ... < in−s and j1 < ... < jn−s of I(A) with it < jt for t = 1, ..., n − s. We

may take the following to be the standard basis of the orbit:

ui1 = es+1, ..., uin−s = en,

uj1 = e2n−s, ..., ujn−s = en+1,

ux1 = e1 + e2, ux2 = e1 + e3, ..., uxs−1 = e1 + es, uxs = e1,

uy1 = ε1e2n−1, uy2 = ε2e2n−2, ..., uys−1 = εs−1e2n−s+1,

uys = εs(e2n − e2n−1 − ...− e2n−s+1)

where εt = 1 if xt < yt, or −1 otherwise. The standard flag corresponding to this basis is

derived in the natural way, Vi = u1 ⊕ ...⊕ ui.

3. K-orbits on G/P

For a parabolic of signature (d1, ..., dk) where d0 = 0 and dk = 2n, define the matrix

{di,j}ki,j=0 (analogously to the full flag case) by

di,j = dim(Vdi ∩ V ⊥dj )

as the relative position of a partial flag with its perpendicular. (Note that di has a very

different meaning from di,j.) Then let {ci,j}ki,j=1 be the matrix defined by

ci,j = di,j−1 − di,j − di−1,j−1 + di−1,j.

So every flag F has a {di,j} matrix and a {ci,j} matrix associated with it. For convenience,

we will call these matrices d(F ) and c(F ) respectively.

The definition of c(F ) relies on d(F ). The following lemma proves the process is reversible,

giving a formula for obtaining d(F ) from c(F ).
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Lemma 3.1. For a partial flag, di,j =
i∑

r=1

k∑
s=j+1

cr,s.

Proof.

i∑
r=1

2n∑
s=j+1

cr,s =
i∑

r=1

2n∑
s=j+1

(dr,s−1 − dr,s − dr−1,s−1 + dr−1,s)

=
i∑

r=1

2n−1∑
s=j

dr,s −
i∑

r=1

2n∑
s=j+1

dr,s −
i−1∑
r=0

2n−1∑
s=j

dr,s +
i−1∑
r=0

2n∑
s=j+1

dr,s

=
i∑

r=1

2n∑
s=j

dr,s −
i∑

r=1

2n∑
s=j+1

dr,s −
i−1∑
r=1

2n∑
s=j

dr,s +
i−1∑
r=1

2n∑
s=j+1

dr,s

=
i∑

r=1

dr,j −
i−1∑
r=1

dr,j

= di,j.

�

The following lemma provides a formula for obtaining c(FP ) from c(FB) where FB ∈ G/B

projects down to FP ∈ G/P .

Lemma 3.2. For FP ∈ G/P , extend it to any full flag FB ∈ G/B. Let c = c(FP ) and

γ = c(FB). Then

ci,j =

di∑
r=di−1+1

dj∑
s=dj−1+1

γr,s.
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Proof.

ci,j = (di,j−1 − di−1,j−1)− (di,j − di−1,j)

=

 di∑
r=1

2n∑
s=dj−1+1

γr,s −
di−1∑
r=1

2n∑
s=dj−1+1

γr,s

−
 di∑

r=1

2n∑
s=dj+1

γr,s −
di−1∑
r=1

2n∑
s=dj+1

γr,s


=

di∑
r=di−1+1

2n∑
s=dj−1+1

γr,s −
di∑

r=di−1+1

2n∑
dj+1

γr,s

=

di∑
r=di−1+1

dj∑
s=dj−1+1

γr,s.

�

Due to this lemma, a natural way of thinking about the ci,j for partial flags is as the number

of symplectic pairs between two partitions, or more rigorously, the number of symplectic pairs

between the basis vectors in two partitions when the partial flag is extended to a full flag

and given a basis.

Define {δ1, ..., δk} as δ1 = d1 and δi = di − di−1 for i > 1. These can be thought of as the

sizes of the partitions.

Definition 3.3. Let Ck be the set of symmetric matrices {ci,j}ki,j=1 such that for all i,
k∑

j=1

ci,j =
k∑

j=1

cj,i = δi and 2 | ci,i.

Proposition 3.4. For every partial flag FP , c(FP ) ∈ Ck.

Proof. We first prove
k∑

j=1

ci,j = δi. By Lemma 3.1, letting j = 0, we get di,0 =
i∑

r=1

k∑
s=1

cr,s.

But we know di,0 = dim(Vi) = di. Hence di =
i∑

r=1

k∑
s=1

cr,s and thus di − di−1 =
k∑

s=1

ci,s. A

similar argument holds for the other sum. Finally, let FB be any extension of FP to G/B,

and let γ = c(FB). Since γ is symmetric and its diagonal elements are 0, by Lemma 3.2, it

is clear that ci,j = cj,i and ci,i must be even. �

Proposition 3.5. For every c ∈ Ck, there exists a partial flag F such that c(F ) = c.
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Proof. Suppose we have a matrix c ∈ Ck. Let the matrix p′ be a k2 by k2 matrix defined

by: for i, j = {1, ..., k}, p′j+k(i−1),i+k(j−1) = ci,j, and all other elements of p′ are 0. Thus,

p′ is a generalized permutation matrix (i.e. it contains exactly one nonzero entry in each

row and each column), and if p′ is partitioned into k2 submatrices, each submatrix size k by

k, then the (i, j) submatrix contains exactly one nonzero entry, which has value ci,j. Now

define the exchange matrix Em as the m by m matrix with 1s along the skew diagonal and

0s elsewhere. Finally, let the matrix p be the block matrix that results when the nonzero

entries of p′ are replaced by blocks such that an entry with value m is replaced by Em. Then

p ∈ C2n as described in Proposition 2.2, i.e. it is the permutation matrix of a fixed-point-free

involution corresponding to an orbit of K on G/B. Now take any flag FB in this orbit and

project it down to FP ∈ G/P . By Lemma 3.2, we have that c(FP ) = c. An example of these

operations is detailed in the subsequent diagram.

2 1 3 2 1
1 4 1 1 1
3 1 0 3 1

1 1
4 1

1 1
3 1

1 1
0 1

1
1

1
1

1
1

1
�

Definition 3.6. For each matrix c ∈ Ck, define the corresponding standard flag S(c) using

the following algorithm. Take only the upper triangular half of c, and halve all the diagonal

elements; call the new matrix c′. Let the row sums of c′ be {a1, ..., ak}. Sets s1, ..., sk with

sizes δ1, ..., δk, such that
⋃
si = {1, ..., 2n}, will be constructed (starting from empty sets) as

follows. Let I = {1, ..., 2n}; elements will be continually removed from I as they are added

to various si. For i from 1 to k, move the ai smallest elements of I to si (moving n elements

in total). Then, for i from 1 to k, for j from i to k, move the c′i,j greatest elements of I to
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sj (which moves the remaining n elements). Finally, the standard flag S(c) is given by the

subspaces Vdi =
i⊕

j=1

⊕
s∈sj

es.

An example of this process is shown below.

2  1  3

1  4  1

3  1  0

1  1  3

    2  1

        0

1 2 3 4 5   6 7 8

16             15      14 13 12

                11 10   9

→ →

s1 s3s2c’i,jci,j

The flag S(c) produced is:

V6 = 〈e1, e2, e3, e4, e5, e16〉

V12 = 〈e1, e2, e3, e4, e5, e6, e7, e8, e10, e11, e15, e16〉

V16 = 〈e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16〉

Proposition 3.7. c(S(c)) = c for all c.

Proof. By inspection of the construction process in Definition 3.6. We want the number of

symplectic pairs between partitions i and j to match ci,j so that we can use Lemma 3.2.

Consider the ith row of c′. The first elements of ai symplectic pairs are placed in si. The

second elements of these pairs are placed in si, ..., sk with frequencies given by c′i,j. �

Proposition 3.8. The projection FP of any standard full flag FB to G/P is in the same

K-orbit as the standard partial flag SP = S(c(FP )).

Proof. Let γ = c(FB), and let c = c(FP ). Define {a1, ..., ak} and s1, ..., sk from c as in

Definition 3.6. Let I = {1, ..., 2n} to begin. Now consider the basis vectors corresponding

to the smallest a1 elements of I, i.e. e1, ..., ea1 . These vectors go to the subspace Vd1 in

FP . Then consider the basis vectors corresponding to the largest a1 elements of I. These

vectors go to various subspaces Vdj in FP depending on γ. The number of vectors going to
13



the subspace Vdj corresponds exactly to c′1,j due to Lemma 3.2. Then it is possible, through

a permutation of {2n, ..., 2n− a1 + 1}, to rearrange these vectors so they correspond to their

standard locations in F ′P . This permutation can be composed with an identical permutation

of {1, ..., a1} (which would not alter FP ) to create a symplectic permutation. Repeating this

process with a2, ..., ak we obtain a final symplectic permutation matrix that would take FP

to F ′P . �

Proposition 3.9. For any F1, F2 ∈ G/P , c(F1) = c(F2) iff F1 and F2 are in the same

K-orbit.

Proof. Suppose c(F1) = c(F2). Extend F1 and F2 to any full flags and use Theorem 2.3 to

send these to standard full flags by a symplectic transformation. Then by Proposition 3.8 the

projection of these back down to G/P can be sent to the standard partial flag constructed

from {ci,j} by symplectic transformations. Hence F1 and F2 are in the same K-orbit.

Now we show the reverse. Suppose that for some k ∈ K, kF1 = F2. But K preserves d(F )

and thus preserves c(F ). Hence, c(F1) = c(kF1). �

Theorem 3.10. The orbits of K on G/P are in bijection with Ck.

Proof. By Proposition 3.9, the orbits of K on G/P are in bijection with the possible values

of c(F ) where F ranges over G/P . But by Propositions 3.4 and 3.5, we know that this is

precisely Ck. Hence we are done. �

4. Q-orbits on G/P

Keep the definitions of k and δi from before, as parameters of the partial flag variety G/P .

The following will define C•k , whose elements parameterize standard partial flags, which we

will eventually show to correspond exactly to Q-orbits on G/P .
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Definition 4.1. Define bx∈S as 1 if x ∈ S and 0 if x 6∈ S. Define Ik = {1, ..., k}. Then

define C•k as
k⊔

s=1

⊔
I(X)⊆Ik

⊔
I(Y )⊆Ik

C−k

where |I(X)| = |I(Y )| = s and C−k is the set of k by k nonnegative symmetric matrices such

that for all i,
k∑

j=1

c−i,j =
k∑

j=1

c−j,i = δi − bi∈I(X)
− bi∈I(Y )

and 2 | c−i,i.

Note that the standard flags in this section are different from the standard flags in Sec-

tion 3. The following will give an algorithm to construct these standard flags.

Definition 4.2. From an element (s, I(X), I(Y ), c
−
k ) ∈ C•k , define a standard (full or par-

tial) flag as follows. Use Definition 3.6 to construct sets s1, ..., sk from c−k , so that
k⋃

i=1

si =

{1, ..., 2(n− s)}. Then add s to all the elements in the si, so that
k⋃

i=1

si = {s+ 1, ..., 2n− s}.

Next, for i from 1 to s, where j is the ith smallest element of I(X), place i in sj; then for i

from 1 to s again, where j is the ith smallest element of I(Y ), place 2n+ 1− i in sj. Finally,

define the following basis (similarly to Proposition 2.7):

us+1 = es+1, ..., u2n−s = e2n−s,

u1 = e1 + e2, u2 = e1 + e3, ..., us−1 = e1 + es, us = e1,

u2n = e2n−1, u2n−1 = e2n−2, ..., u2n−s+2 = e2n−s+1,

u2n−s+1 = e2n − e2n−1 − ...− e2n−s+1

Then the flag is given by Vdi =
i⊕

j=1

⊕
s∈sj

us.

The projection of a standard full flag from Proposition 2.7 onto G/P can be written by

partitioning the symbols according to the signature of P . For example, let 2n = 4 and

take the standard flag of the G/B orbit A2Y1A2X1, or written with partitions, A2|Y1|A2|X1|.

Projecting this to G/P with signature (2, 4), we obtain A2Y1|A2X1|.
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Clearly the order of symbols within a partition does not matter, since the flags are the same

up to permutation of basis vectors in a partition. Using the current example, A2Y1|A2X1 is

the same flag as Y1A2|A2X1.

Theorem 4.3. Any standard full flag projected to G/P with more than one X symbol in

a partition remains in the same Q-orbit when the first X, and the Y it corresponds to, are

replaced by As. Similarly, any standard full flag projected to G/P with more than one Y

symbol in a partition can be written such that the second Y , and the X it corresponds to, are

replaced by As.

Proof. Take a projection of a standard full flag to G/P where two Y symbols are in one

partition. Let the first symbol be Ya, corresponding to the standard basis vector e2n−a. The

second symbol is Ya+1 and corresponds to e2n−a−1. Then Xa is e1+ea+1 and Xa+1 is e1+ea+2:

uxa = e1 + ea+1

uxa+1 = e1 + ea+2

uya = e2n−a

uya+1 = e2n−a−1

Now consider the transformation q:

qea+1 = ea+1

qea+2 = ea+1 + ea+2

qe2n−a−1 = e2n−a−1

qe2n−a = e2n−a − e2n−a−1

and qei = ei for the rest. It is clear that q ∈ Q2n.
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Then under this transformation, ux′a = e1 + ea+1 remains the same, uxa+1 becomes ux′a+1
=

e1 + ea+1 + ea+2. However, since ux′a+1
appears later than ux′a in the sequence, it is equivalent

to say ux′a+1
= ea+2 as an alternative basis of the same partial flag.

Similarly uy′a = e2n−a becomes e2n−a − e2n−a−1 and uy′a+1
= e2n−a−1 remains unchanged,

but since uy′a and uy′a+1
are in the same partition, it is equivalent to say uy′a = e2n−a as an

alternative basis of the same partial flag.

So now we have

ux′a = e1 + ea+1

ux′a+1
= ea+2

uy′a = e2n−a

uy′a+1
= e2n−a−1

and a symplectic permutation matrix will transform this into a standard basis, with X ′a+1 and

Y ′a+1 replaced by an A pair. A similar argument holds for two X in the same partition. �

Proposition 4.4. The projection FP of any standard full flag FB to G/P is in the same

Q-orbit as some standard partial flag F ′P constructed by Definition 4.2.

Proof. Remove theXY pairs from the symbolic representation of FB; this reduces (s, I(X), I(Y ), c
−
2n)

to (0,∅,∅, c−2n). Then we are left with a standard flag for K-orbits (from Definition 3.6). By

application of Theorem 3.8, when we project this to G/P we can multiply by a symplectic

permutation matrix to get a standard partial flag for K-orbits. When the XY pairs are

reinserted and FB is projected into G/P , we may use Theorem 4.3 to transform FP until

there is at most one X and one Y symbol in each partition. Then we can construct I(X) and

I(Y ) with no repeated elements within each set. �

Let the partitions of a partial flag be numbered (indexed) as (1, 2, ..., k).
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Define the W -position of a partial flag as the boolean matrix

relposW (F ) = {Vdi ∩ V ⊥dj−1

?
⊂ W}i,j.

Proposition 4.5. For a standard partial flag, let I(X) = {x1 < ... < xs} and I(Y ) = {y1 <

... < ys}. Then the W -position of the partial flag is given by: Vdi ∩ V ⊥dj−1
⊂ W iff i ≥ xt and

j ≤ yt for some t.

Proof. We induct by starting with G/B and projecting down to G/P in small increments.

Construct sets s1, ..., sk from Definition 4.2. Then sort each set and concatenate them,

creating an ordered 2n-tuple (s′1, ..., s
′
2n) (so the smallest element of s1 is s′1, the next smallest

is s′2; the smallest element of s2 is s′|s1|+1, and so on). Construct a full flag FB by Vi =
i⊕

j=1

us′j

(the vectors (u1, ..., u2n) also given by 4.2). Thus the projection of FB to G/P is FP . The

result of the proposition for the full flag FB is shown in Matsuki (see [5], Equation 3.1).

Suppose the signature of the final parabolic P is (d1, ..., dk), and let (d′1, ..., d
′
2n−k) be

the complement in {1, ..., 2n} (such that d′1 < ... < d′2n−k). Let Pl be the parabolic with

signature {1, ..., 2n}\{d′1, ..., d′l}. By inductive hypothesis Pl−1 has W -position given by the

proposition. Let pl be the index of the partition containing d′l (as its highest dimension)

in G/Pl−1. When projecting down from Pl−1 to Pl, the row and the column indexed pl

in relposW (FPl−1
) are deleted, and thus relposW (FPl

) can be described by the same (xt, yt)

except that all xt > pl and yt > pl are decremented by 1. But notice that due to the

re-indexing of partitions, all X and Y symbols that appeared in a partition higher than pl

have their partition indexed decremented by 1 when projected. Thus the X and Y symbols’

partition indices still correspond to the xt and yt when projected down. Finally, note that we

always have x1 < ... < xs and y1 < ... < ys, since FB was constructed so that its projection

into G/P had at most one X and one Y in each partition. The induction is complete. �

This leads us to the main result of this section.

Theorem 4.6. The orbits of Q on G/P are in bijection with C•k (as defined by 4.1).
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Proof. First we prove injectivity. It suffices to show that every F ∈ G/P is in the same

Q-orbit as some standard partial flag. Extend F to a full flag, use Proposition 2.7 to send

it to a standard full flag, project this down to G/P , and use Proposition 4.4 to send the

projection to a standard partial flag.

Next we prove surjectivity. It suffices to show that no two standard partial flags are in the

same Q-orbit. Standard partial flags are parameterized by (s, I(X), I(Y ), c
−
k ), but Theorem 4.5

shows that different I(X) or I(Y ) implies different W -positions, implying different Q-orbits

(since Q preserves the property of a subspace being in W ). If c−k is different then that implies

different K-orbits, implying different Q-orbits. �

Note that if P = B, we recover Theorem 2.5. In this case δ1 = ... = δ2n = 1. Then

for some i, if i ∈ I(X) and i ∈ I(Y ) simultaneously, C ′k becomes the null set; otherwise, for

i ∈ I(X) ∪ I(Y ),
k∑

j=1

ci,j =
k∑

j=1

cj,i = 0 and those rows and columns of the matrix may simply

be removed, leaving us with an element of C(I(A)).

Finally, the orbits of Q on G/P are equivalent to the orbits of K on V ∗×G/P , where V ∗

denotes C2n\{0}; and the orbits of K on G/P are equivalent to the orbits of K on {0}×G/P .

Thus the orbits of K on V × G/P consist of the orbits of Q on G/P , plus the orbits of K

on G/P . Combining Theorem 3.10 and Theorem 4.6, we obtain:

Corollary 4.7. The orbits of K on V ×G/P are in bijection with

k⊔
s=0

⊔
I(X)⊆Ik

⊔
I(Y )⊆Ik

C ′k

where we retain all definitions from Theorem 4.6.

5. Conclusion

We have computed the orbits of K on G/P and the orbits of K on V ×G/P . The bijections

for these results take the form of a nonnegative integer matrix for each orbit, reminiscent of
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the left hand side of the classical RSK correspondence; thus the next step would be to relate

these orbits to semistandard Young bi-tableaux. It is not necessarily true that the orbits

biject directly to semistandard bi-tableaux, and it remains to be explored what modifications,

if any, must be made. Another direction would be to compute the closure order for these

orbits, i.e. the orbits that are contained in the closure of other orbits, which admits a partial

order akin to the Bruhat order.
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