The PRIMES 2013 Computer Science Section Problem Set
Dear PRIMES applicant,

If you are applying to the Computer Science Section, please send us your solutions of this
problem set as part of your PRIMES application by December 1, 2012. For complete rules, see
http://web.mit.edu/primes/apply.shtmi

Note that this set contains two parts: “General math problems” and “Computer science
problems.” Please solve as many problems in both parts as you can.

For the general math problems, you can type the solutions or write them down by hand and then
scan them. Please attach your math solutions to the application as a PDF file. Write down not
only answers, but also proofs (and partial solutions/results/ideas if you cannot completely solve
the problem). The name of the attached file must start with your last name, for example, "smith-
math-solutions.™ Include your full name in the heading of the file.

Your solutions of the computer science problems may include several different files. In this case,
please put them in a folder whose name starts with your last name, for example, ""smith-cs-
solutions™ and zip this folder. Do not use any compression tools other than zip. Attach the zip file
to your application email. If it’s a single file, please keep the original file extension (.java, .c,
etc.) and name your file similarly.

You are allowed to use any resources to solve these problems, except other people's help. This
means that you can use calculators, computers, books, and the Internet. However, if you consult
books or Internet sites, please give us a reference. For an elementary introduction to
cryptography methods, see, for example, Janet Beissinger and Vera Pless, The Cryptoclub: Using
Mathematics to Make and Break Secret Codes (AK Peters, 2006), and Simon Singh, The Code
Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography (Anchor, 2000).
For a more advanced textbook, see Bruce Schneier, Applied Cryptography: Protocols,
Algorithms, and Source Code in C, Second Edition (Wiley, 1996).

Note that some of these problems are tricky. We recommend that you do not leave them for the
last day, and think about them, on and off, for some time (days and possibly weeks). We
encourage you to apply if you can solve at least 50% of the problems in both parts. We note,
however, that many factors will play a role in the admission decision besides your solutions of
these problems.

Good luck!



General math problems

Problem G1. You toss two coins trying to get two heads. Namely,
you toss both coins until you get at least one head. If you get two heads
at that point, you finish, and if you get just one, you keep tossing the
other coin until you get a head.

(a) What’s the chance that you will not finish in m tosses? (Tossing
two coins simultaneously counts as one toss).

(b) Give the answer as a fraction for m = 8.

Problem G2. A black Bishop and a white King are placed on
a 2n by 2n chessboard (all positions are equally likely). What is the
chance that the Bishop attacks the King (i.e., the King is under check)?
(Recall that the Bishop strikes along diagonals). Write the answer as
a rational function of n.

Problem G3. A sequence a,,n > 0 of positive integers satisfies the
recursion a, 1 = F(a,), where F(z) is the sum of the squares of all
the digits of = (for example, F'(324) = 3? + 22 + 4% = 29). The number
ag can be arbitrary.

(a) Show that either a, = 1 starting from some n, or a, is periodic
with minimal period 8 starting from some n. What are the 8 numbers
repeating periodically in the second case?

(b) Let h be any nonnegative integer function on the set of dig-
its 0,1,...,9. Consider the recursion b,y = Fj(b,), where Fj(z) :=
> h(x;), and x; are the digits of z. Show that b, is eventually peri-
odic, and there are finitely many possible minimal periods for it.

Problem G4. Let a > 1.

(a) For which a does there exist a solution 0 < z < 1 of the equation

(1+2)3+ (1 —a2)2=a?

Show that if such a solution exists, it is unique, and find it.
(b) For which a does there exist a solution 0 < x < 1 of the equation

I+ + (1 —a)/* =a?

Show that if such a solution exists, it is unique, and find it.
Problem G5. Find all rational numbers a, b for which the number
v = log,(a + by/2) is rational.



Computer science problems.

About the problems. The theme of this year’s problems is encryption,
decryption, and breaking ciphers. The ciphers that you will be exploring in this
problem set are not real-life ciphers. Some of them are trivial to break even
by hand, the other ones can be easily broken with a computer (you will learn
how). However, the study of these ciphers gives you interesting insights into the
world of encryption, and you can find ways to modify them to make them more
difficult to break.

What you need to do. For these problems we ask you to write a pro-
gram (or programs) to implement the desired functionality. You may use any
programming language you want. It is best to implement each problem as a
separate function so that we can run them separately. We will be looking for
the following in your submissions:

e Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries (which is probably a good idea), make sure to include all ”import”
statements, as required by the language you are using. Make sure to send
the files under the correct names, including the file extension (.java, .c,
ete).

e Test example that you were using (you can write them in comment or in
a separate file). Make sure to test your code well — you don’t want it to
fail our tests!

e Code documentation and instructions. In the beginning of each file specify,
in comments:

1. Your name.

2. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

3. The programming language, including the version (Java 1.6 or 1.7, for
instance), the development framework (such as Visual Studio) that
you used, unless you were using just a plaintext editor (notepad,
emacs, etc), and the platform (such as Windows, Mac, Linux)

4. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program may get
input from the user (i.e. it asks to enter some data and then reads it)
or you may store the data in specific variables within your program.
You need to clearly explain how to input or set the data.

5. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.


http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption

6. If you were using test data (other than what was given to you as a
part of the problem statement) or had your testing code in a separate
file, please submit those as well.

7. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

e Clear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average
is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

Programming language features you might need. |Modulo (or mod-
ulus) operator| is very important in cryptography. @ modulo b is defined as
the remainder of integer division of a by b. For instance, 11 modulo 3 is 2,
10 modulo 2 is 0, and so is 0 modulo 2. Note that —2 modulo 3 is 1 since
—2=3x(-1)+1.

All modern programming languages have a modulus operator, but in most
of them it’s incorrect: it returns a negative result for a negative number. For
instance, in C-like languages (including Java) the default “modulus” operator
(which is %) returns —2 for —2 modulo 3. The correct answer, in this case 1, is
obtained by adding the divisor, in this case 3. If your language has this issue,
we suggest that you write a function to perform this adjustment for negative
numbers automatically and use this function instead of the default modulus
operator.

And now to the problems:

Problem 1. Most textbook encryption schemes work on the 26 letters
of the English alphabet, leaving out punctuation marks. Our encryption will
work on the 26 letters of the English alphabet and, additionally, four common
punctuation marks:

e a period .


http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

e a comma ,
e an exclamation point !
e a question mark ?

They are added to the end of the alphabet in the above order. All other
characters are omitted when encryption is performed. We also don’t
distinguish between lower-case and upper-case letters. We will refer to our
alphabet of the 26 letters and four punctuation marks as A.

Every letter in the alphabet is assigned a number, in order, starting at 0.
This means that a is assigned 0, b is assigned 1, z is assigned 25, . is assigned
26, and so on.

The first encryption scheme that you need to implement is very simple. You
are given a text to encrypt, for instance a string Why not?, and another symbol
in the alphabet A, for instance a letter ¢, that serves as the encryption key. In
order to encrypt the given text using the given key, you need to do the following;:

1. convert all letters to lower-case,

2. remove all the symbols that are not in A from the input text. We refer to
the result of the first two steps as filtered input.

3. convert the key character to its assigned number. We will call it the
numeric key.

4. for each character in the filtered input do the following;:

(a) add the numeric key to the character,

(b) take the result modulo 30, i.e. if the result is larger than 29, subtract
30 from it.

(¢) convert it from a number to a character in A according to its position
in A (for instance, 3 is converted to d).

This encryption approach is called a Caesar cipherl

For the above example we get the encryption yj.pqvb. The empty space char-
acter got filtered out, all letters got converted to the lower case. Then every
character gets shifted forward by 2 since ¢ has a position 2 in the alphabet
(recall that a has a position 0). The ? character is the last in the alphabet (its
assigned number is 29). Adding 2 to it gives 31 which is outside the alphabet,
so we take the result modulo 30 and get 1, which corresponds to b.

As another example, the same string Why not? encrypted with a symbol !
results in ufwlmr, (the comma is a part of the encryption).

Your task for this problem is to write a function that takes an input text
and a key (a symbol in A) and returns the corresponding encrypted text.Then
show the result of this function for the string

Neil Armstrong, Mike Collins, and Buzz Aldrin flew on the Apollo
11 mission.


http://en.wikipedia.org/wiki/Caesar_cipher

using the key m.

Problem 2. The task for this problem is to write a function that performs
decryption: you need to write a function that takes encrypted text and a key
(as a character) and returns the filtered original (unencrypted) text. Note that
there is no way to recover characters that got filtered out during encryption or
the distinction between upper/lower-case characters, so the decryption of the
examples in Problem 2 will result in whynot? (make sure to test your function
on these examples).

Submit the result of decrypting the string
?i?mbt?sdnondihzitajmhnc?zowgdbcow,c?hd,zg?i?mbtwzi! ?g?,omd,zg?i?mbtv
with the key z.

Problem 3. This type of encryption is, of course, not secure at all: there
are only 30 possibilities of a key. You can try them all even by hand, and stop
once you recognize English words in the decryption. However, we would like to
have an automated way of breaking this simple encryption. This approach is
based on the fact that some letters in English occur more often than others. For
instance, a is very common, whereas x appears much less frequently. This means
that if we have a sufficiently long encrypted text, we can measure frequencies
of characters in it. The most frequent character in encrypted text is likely to
decrypt to a,t, or e. Knowing this, as well as other frequencies, allows you
to automatically determine the likely key without even trying any dictionary
words.

Frequencies of English letters are well known, but our alphabet is not quite
English: it also includes the four punctuation marks. Thus you need to compute
frequencies of characters in this alphabet based on some sample English texts.

Write a program (or a function) that, given a text as input, returns the
number of occurrences of every character of A in the filtered text (i.e. after all
non-A characters are removed and all letters are converted to the lower case)
and the percentage of occurrences of each character in the filtered text. As a
small example, in the string This string is a test 1-2-3.

e s occurs 4 times (22.22%)
e { occurs 4 times (22.22%)
e i occurs 3 times (16.67%)
e ecachofa, e, g, h, n, r, and . occurs once (5.56% each)

Spaces, digits, and dashes are filtered out.

Since short texts may have unusual distributions of frequencies, you need
to use a long text to get an accurate estimate. This link has full text of Pride
and Prejudice which should be sufficient (also available for download as test1.txt
from “How to Apply” page). Write a function that reads text and determines the
number of occurrences and frequencies of each character in the corresponding
filtered text. Compute and submit the resulting numbers of occurrence
for each character of the alphabet A and the corresponding frequen-
cies in this sample text (in comments or as a separate file).


http://web.mit.edu/primes/materials/2013/test1.txt

Problem 4. Now that you know the frequencies of characters in A you can
guess an encryption key based on matches of its frequencies to A. Below is an
encrypted text:

jurlnbj,knprwwrwp!xpn!an.d!r.nmxo,r!!'rwpkdqgn.,r, 'n.xw!gnkjwtgjwmx
oqjarwpwx!qrwp!xmxxwlnx. !brln,qngjmynnynmrw!x!qgnkxxtqn.,r,!n.bj

, .njmrwpgk?!r!qjmwxyrl!?.n,x.1lxwan.,j!rxw,rwr!gjwmbqgj'r, 'qn?,nxojkx
xtg!gx?pq! jurlnbr!qx?!yrl!?.n,x.1lxwan.,j!rxwi,x,qnbj,lxw,rmn.rwprwqn
.xbwvrwmj,bnuuj, ,qnlx?umgox. !qngx!mjdvjmnqgn.onnuan.d,unnydjwm

, '?7yrmgbgn'!qgn. 'gqnyunj,?.nxovjtrwpjmjr,dlgjrwbx?umknbx. 'q!qgn!.x7ku
nxopn! !rwp?yjwmyrltrwp!qnmjr,rn, gbgnw, 7mmnwudjbqr !n. jkkr!br!qyr
wtndn, . jwlux,nkdgn.f

Compute its frequencies of characters, compare them to frequencies of A,
and guess the encryption key. Then check your guess by decrypting the text.
Note that your frequencies would not be exactly the same as the ones computed
in the previous problem, but they should be close. Submit the decrypted
text and the key, and give a brief explanation of how you figured out
the key.

Your solution would be ranked higher if you automate this process to
some degree: write a function that, given a text, returns the most likely key or
several top guesses.

Problem 5. In this and the following problems we change the cipher to a
more sophisticated one, known as Vigenere cipher. A key for this cipher is a
short word or a phrase in which all characters are in A. To encrypt a text, you
need to do the following:

1. Filter out all characters not in A and convert all the letters to lower-case,
just like in Problem 1.

2. Use the first character of the keyword to encrypt the first character of the
filtered text (by adding the numeric key to the character’s position in the
alphabet and taking the result modulo 30), the second character of the
keyword to encrypt the second character of the filtered text, and so on.
When you reach the end of the keyword, start from its beginning, and
continue cycling over the keyword until the end of the filtered text.

As an example, the encryption of A short sample text with the keyword
primes! is pfp.vhgp?xxihcig. This cipher has an advantage that a character
is not always encrypted with the same character (note that the two occurrences
of s in the input text get encrypted to two different characters).

Write a function (or a program) that takes a text and a keyword and returns
the text encrypted with this keyword. Submit the encryption of the text

Cryptography is the study of techniques for secure communication
in the presence of third parties.
using the keyword primes! (the!is a part of the keyword).

Problem 6. Write a function to decrypt a text given a keyword. Submit
the decryption of the string


http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

,blgvbaclxbsyppcpgmg?pfmpsbkpgpqgsrxtixxzc?ecmrva??xcxwpdtqqruca
eiox.at

also using the keyword primes!

Problem 7. One might think that because Vigenere cipher is polyalphabetic,
i.e. one character may be encrypted by different ones, it is very difficult to find
out the encrypted text without knowing the key. However, it turns out that if
you have a sufficiently long text, the same method of frequencies that you used
for breaking the Caesar cipher can be used here.

The approach consist of two parts: guessing the length of the keyword and
guessing the keyword itself (which, of course, allows one to successfully decrypt
the text). The idea is the following: suppose the key length is N. Then every
N character of the text is encrypted with the same character of the keyword,
so if we take every N* character of the encrypted text, we would get character
distribution very similar to what you have discovered in Problem 3. On the other
hand, if the real length of the key is N, but you take every M letter, where
M # ix N for any integer ¢, and assuming that all characters of the keyword are
different, the distribution of the frequencies of characters separated by M would
be much closer to uniform (i.e. evenly distributed characters). Experiment with
different texts to see the difference.

Thus in order to find the length of the key you need to try different lengths
N and find one that makes the frequencies of all characters at a distance N
from each other closest to those of an English text, as determined in Problem
3. Once you have discovered the length of the keyword, you can determine
each character of the keyword by breaking down the ciphertext into groups of
characters separated by N and then applying the method used in Problem 4 to
each group.

For this problem you need to write a function (or a program) that auto-
matically suggests likely length of the keyword, given an encrypted text. You
may assume that the keyword does not have repeated characters and its length
is between 3 and 15 characters, inclusive. You don’t need to automate finding
the keyword itself once you found the length (you can determine it manually
by looking at the frequencies), but your solution will rank higher if you
automate this process as well (perhaps just reuse your solution for Problem 4).
Even if you are determining the keyword characters manually, you still need a
function to print out the frequencies of characters at a distance N from each
other, and perhaps other helper functions: the more convenient — the better.

The sample text to decrypt (without knowing the keyword!) is here| (also
available for download as test2.txt from “How to Apply” page). The length
of the keyword is between 3 and 15, and it doesn’t have repeated characters.
Submit the keyword that was used to encrypt the text, and explain
how you found it. You don’t need to submit the decryption.

Problem 8. This problem is open-ended and deals with developing im-
provements to Vigenere cipher. Suppose that you are starting with the same
alphabet A, but the alphabet that you use for the resulting ciphertext may be
larger, for instance it may have 40 characters (say, we add the 10 digits). What


http://web.mit.edu/primes/materials/2013/test2.txt

can you do to make breaking the cipher harder? Your goal is to defeat the
frequencies method. A complete solution for this problem would include the
description of the method, the reasons why it works, the code that implements
it (both encryption and decryption) and some statistics that show that the de-
cryption is harder to break than the traditional Vigenere cipher. Make sure that
every encrypted text always decrypts back to the original (filtered) text when
the keyword is known.



	PRIMES-CS.pdf
	Pages from entpro13.pdf
	CSproblems2012.pdf

