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1 Introduction

A Pythagorean triple modulo a prime p is a solution to the equation x2 + y2 ≡ z2

(mod p). Using only introductory number theory, we will find surprising results about
the distribution of triples across values modulo p. We find that the triples are equally
distributed among non-zero values of z (mod p) and that the probability that randomly
chosen x, y, and z form a Pythagorean is exactly 1/p. Our eventual goal will be to count
the number of Pythagorean triples modulo p.

In Section 2, we will introduce primitive roots and build up their basic properties.
These tools will lead us to the important facts about squares modulo p and the Legendre
symbol in Section 3. Ultimately, these findings will inform our approach to Pythagorean
triples. In Section 4, we will finally compute the total number of triples (Corollary 4.7).

2 Preliminaries

We will begin by providing a few definitions and conventions that will assist us in later
proofs. Throughout the paper, p will be an odd prime, and all other variables (a, b, k, g, α
ect.) will be integers. Much of our work will take place modulo p, but we generally specify
these instances.

Definition 2.1. We use a | b to denote that a divides b.

Definition 2.2. The greatest common divisor of two integers, denoted gcd(a, b), is the
largest integer d such that d | a and d | b.

Definition 2.3. We say that a has order k modulo p if k is the smallest integer such
that ak ≡ 1 (mod p).

Definition 2.4. We call g a primitive root mod p if for all a (mod p) there exists k such
that gk = a.

For example, in the small case of p = 5, we find that 2 is a primitive root. If we check
each power of 2, we see that all values modulo 5 are covered.
20 = 1, 21 = 2, 23 = 3, and 22 = 4. We are interested in primitive roots because they are
a powerful tool that can help us prove more difficult theorems.
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Lemma 2.5. Let g be a primitive root mod p. The first p − 1 powers of g — that is,
g0, g1, . . . , gp−2 — are unique mod p.

Proof. Assume to the contrary that there are two distinct powers α, α′ less than p − 1
such that gα ≡ gα

′
(mod p). Without loss of generality, assume α > α′. Then gα−α

′ ≡ 1
(mod p). This is a contradiction because g has order p−1 by the definition of a primitive
root.

It follows from Definition 2.4 that every value a (mod p) can be represented as a
power of a primitive root: since there are p− 1 distinct values and p− 1 distinct powers.
It follows that the order of a primitive root is exactly p− 1.

The following is a key lemma that will assist us in many later proofs. We will not
prove this lemma in this paper, but a full proof can be found in any introductory number
theory text.

Lemma 2.6. For a prime p, there is a primitive root mod p.

Although we won’t prove it here, Lemma 2.6 is a key fact in number theory whose
proof can be found in any introductory book on the subject. The following lemma is one
of many examples why primitive roots are useful. Additionally, as only prime numbers
are guaranteed to have primitive roots, we cannot generalize our results to all composite
numbers.

Lemma 2.7. For all nonzero a mod p, there is a unique x such that ax ≡ 1 (mod p).
We call x the inverse of a mod p, denoted a−1.

Proof. Consider a primitive root g modulo p. By Lemma 2.5 we know that there exists
a power k such that gk ≡ a (mod p). Since k is strictly between 1 and p− 1, this implies
that (p−1)−k is positive. Therefore, by the definition of a primitive root, we know that
gp−1 ≡ 1, so g(p−1)−ka ≡ 1 (mod p). By Lemma 2.5, a has an inverse modulo p.

We assume that this inverse is non-unique and take x and x′ to be inverses of a then

a(x− x′) = ax− ax′ ≡ 1− 1 ≡ 0 (mod p).

This contradicts the definition of a. So our inverses must be unique.

3 Legendre Symbols

The Legendre symbol is a powerful tool that will ultimately assist us in counting the
number of Pythagorean triples mod p. In this section, our goal is to define the Legendre
symbol and to demonstrate some of its properties. For this section, it is important to
remember that p is odd.

Definition 3.1. For all a such that gcd(a,m) = 1, we call a is called a quadratic residue
modulo m if the congruence x2 ≡ a (mod m) has a solution. If it has no solution, then
a is called a quadratic nonresidue mod p.
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Definition 3.2. If p denotes an odd prime, then the Legendre symbol
(
a
p

)
is defined to

be 1 if a is a quadratic residue, −1 if a is a quadratic nonresidue, and 0 if p | a.

In this section, our goal is to develop the properties of the Legendre symbol, with the
end goal of proving that it is multiplicative.

Proposition 3.3. For any odd prime p, the number of nonzero quadratic residues and
nonzero nonresidues modulo p are equal.

Proof. By Lemma 2.5, we can express every x < p in the form gk (mod p), where g is a
primitive root modulo p. By Lemma 2.6, know that such a g exists.

First, assume that a is a quadratic residue. Then by Definition 3.1, we know that the
equation a ≡ x2 (mod p) has solutions. Substituting in gk for x yields g2k ≡ a (mod p).
Therefore, a is only a quadratic residue when g is raised to an even power.

Since the order of g (mod p) is p − 1, there are exactly p−1
2

even k, k < p, each of
which yields a unique nonzero quadratic residue modulo p. The same approach can be
used to determine that there are also exactly p−1

2
odd k, implying that there are p−1

2

nonzero quadratic nonresidues modulo p.

Proposition 3.4. For all odd primes p, we have that,

p−1∑
k=0

(
k

p

)
= 0.

Proof. There are the same number of nonzero quadratic residues and nonresidues modulo

p, by Proposition 3.3. This implies that there are p−1
2

values of k such that
(
k
p

)
= 1, and

that there are also p−1
2

values of k such that
(
k
p

)
= −1. Additionally, the last value, k = 0,

has
(
k
p

)
= 0. Therefore, by the definition of the Legendre symbol,

∑p−1
k=0

(
k
p

)
= 0.

Proposition 3.5. The number of solutions to x2 ≡ a (mod p) is 1 +
(
a
p

)
.

Proof. Consider three cases: when
(
a
p

)
= 1, when

(
a
p

)
= −1, and finally when

(
a
p

)
= 0.

Case 1:
(
a
p

)
= 1. Then 1 +

(
a
p

)
= 1 + 1 = 2, which is indeed the correct number of

solutions. Indeed, we can see that if
√
a is a solution to the equivalence x2 ≡ a (mod p),

then −
√
a is a solution as well.

Case 2:
(
a
p

)
= −1, so no solutions exist. This means that 1 +

(
a
p

)
= 1 − 1 = 0, which

is also correct.
Case 3:

(
a
p

)
= 0, which implies that a = 0 because p is prime. x ≡ 0 (mod p) is the only

solution to the equation x2 ≡ 0 (mod p), which aligns itself with the proposition.

Proposition 3.5 allows us to prove Euler’s Criterion, which gives an alternate method
of computing the Legendre Symbol for a given a and p.
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Theorem 3.6 (Euler’s Criterion). If p is an odd prime, then x2 ≡ a (mod p) has two
solutions if a(p−1)/2 ≡ 1 (mod p) and no solutions if a(p−1)/2 ≡ −1 (mod p). In other
words, (

a

p

)
≡ a(p−1)/2 (mod p).

Proof. By Lemma 2.6 we know that there exists a primitive root g mod p. Additionally,
by Lemma 2.5, for any k, we can write k ≡ gi (mod p).

Case 1: a is a quadratic residue.
In this case, we can write a ≡ b2 (mod p). Set b ≡ gn (mod p). Evidently, this directly
implies that a2 ≡ g2n (mod p). If we raise a to the power of p−1

2
, then we see that

a(p−1)/2 ≡ gn·(p−1) ≡ 1 (mod p).

Case 2: a is a quadratic nonresidue.
In this case, write a ≡ gn, where n is odd. When we raise a to the power of p−1

2
, we

obtain
a(p−1)/2 ≡ gn·(p−1)/2 (mod p).

We can rewrite n · p−1
2

as

n− 1

2
· (p− 1) +

p− 1

2
,

meaning that
gn·(p−1)/2 = g(n−1)/2·(p−1)+(p−1)/2.

Since n−1
2
· (p− 1) is a multiple of p− 1, we obtain that

a(p−1)/2 ≡ g(p−1)/2 (mod p).

Because g is a primitive root, its order is p− 1. This directly implies that g(p−1)/2 ≡ −1
(mod p), as desired.

Case 3: a is a multiple of p.
In this case, clearly a ≡ 0 (mod p). Since p−1

2
is an integer, this implies that a(p−1)/2 ≡ 0

(mod p).

Euler’s Criterion is useful because it allows us to very easily prove that the Legendre
symbol is multiplicative.

Theorem 3.7. We have
(
a
p

)(
b
p

)
=
(
ab
p

)
.

Proof. If
(
a
p

)
or
(
b
p

)
= 0, then this implies that p | a or p | b. However, if this is true,

then p | ab as well. Therefore,
(
ab
p

)
= 0, and so

(
a
p

)(
b
p

)
=
(
ab
p

)
in this case.
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Now assume that neither
(
a
p

)
nor

(
b
p

)
= 0. By Euler’s Criterion [Theorem 3.6],(

ab

p

)
≡ (ab)(p−1)/2 ≡ (a(p−1)/2)(b(p−1)/2) ≡

(
a

p

)(
b

p

)
(mod p).

Therefore, we have that
(
a
p

)(
b
p

)
≡
(
ab
p

)
(mod p) when both Legendre symbols are

nonzero as well.

4 Pythagorean Triples

Definition 4.1. A Pythagorean triple mod p is a tuple of three nonnegative integers
(x, y, z) such that x2 + y2 ≡ z2 (mod p) and x, y, and z are all less than p.

In this section, we will count the number of Pythagorean triples modulo p. We will
begin by enumerating triples in the case z = 0, and then consider the general case. Using
these computations, we derive insights about how Pythagorean triples are distributed.

Proposition 4.2. We have

p+ (p− 1)

(
−1

p

)
solutions to the equation x2 + y2 ≡ 0 (mod p).

Proof. Since x2 + y2 ≡ 0 (mod p), this means that y2 ≡ −x2 (mod p). From Proposi-

tion 3.5, we see that there are 1 +
(
−x2
p

)
solutions to the equation y2 ≡ −x2 (mod p) for

a given x. Additionally, by Theorem 3.7, we can simplify
(
−x2
p

)
as follows:(

−x2

p

)
=

(
−1

p

)(
x2

p

)
.

Moreover, x2 is always a quadratic residue mod p, so
(
x2

p

)
= 1 when x is nonzero.

Therefore, (
−1

p

)(
x2

p

)
=

(
−1

p

)
.

So for any nonzero x, the number of solutions to this equation is

1 +

(
−x2

p

)
= 1 +

(
−1

p

)
.

As x ranges from 1 to p− 1, the total number of solutions for nonzero x to the equation
x2 + y2 ≡ 0 (mod p) is given by

(p− 1)×
(

1 +

(
−1

p

))
.
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However, we have failed to account for the solution (0, 0, 0). Therefore, there are actually

1 + (p− 1)×
(

1 +

(
−1

p

))
Pythagorean triples mod p with z = 0. This simplifies to

1 + (p− 1)× (1 +

(
−1

p

)
) = 1 + (p− 1) + (p− 1)×

(
−1

p

)
,

which is equivalent to

p+ (p− 1)×
(
−1

p

)
.

Lemma 4.3. For a prime p and an integer a relatively prime to p, we have that

p−1∑
x=0

(
x

p

)(
x+ 1

p

)
=

p−1∑
x=0

(
x

p

)(
x+ a

p

)
.

Proof. For each x, by Lemma 2.7 we know that a must have an inverse modulo p, so we
can find y = a−1x. This means that ay ≡ x (mod p) so we can rewrite the original sum,∑

x

(
x

p

)(
x+ a

p

)
=
∑
y

(
ay

p

)(
ay + a

p

)
.

We know that the Legendre symbol is multiplicative by Theorem 3.7, so we can take out

the
(
a
p

)
from both Legendre symbols to get

∑
y

(
a

p

)2(
y

p

)(
y + 1

p

)
.

We know
(
a
p

)
is nonzero so

(
a
p

)2
= 1. Therefore,

p−1∑
x=0

(
x

p

)(
x+ a

p

)
=

p−1∑
x=0

(
x

p

)(
x+ 1

p

)
.

While the following two propositions may seem arbitrary, a very similar expression
will appear when counting triples. The mechanism of substituting 1 for an arbitrary a
will be the crux of our final computation. Proposition 4.4 will simplify this substitution
even further.
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Proposition 4.4. We have that

p−1∑
x=0

(
x

p

)(
x+ 1

p

)
= −1.

The align* environment uses & symbols. See the following example of how to use it.

LHS = RHS1

= RHS2.

Proof. Let S equal the sum above. Then, by Lemma 4.3 we have that

(p− 1)S =

p−1∑
x=0

(
x

p

)(
x+ 1

p

)

=

p−1∑
x=0

(
x

p

)(
x+ a

p

)

=

p−1∑
a=1

p−1∑
x=0

(
x

p

)(
x+ a

p

)
.

By Proposition 3.4 we have that
p−1∑
x=0

(
x

p

)
= 0.

However, our sum does not include a = 0. So we can subtract out that term to get,

p−1∑
x=1

(
x

p

)(
0−

(
x

p

))
=

p−1∑
x=1

−
(
x

p

)2

= −(p− 1).

This means that −(p− 1) = S(p− 1), so S = −1.

Proposition 4.5. Let N denote the number of solutions (x, y) to x2 + y2 ≡ 1 (mod p).
Given a fixed k < p, the number of solutions (x, y) to x2 + y2 = k2 will be N .

Proof. We can write x2 + y2 = 1 as y2 = (1− x)(1 + x). We know this has N solutions.
Similarly, we can write

x2 + y2 = k2 as y2 = k2 − x2.
Dividing by k2 we find that

y2

k2
= 1− x2

k2
.

Since we can multiply a Pythagorean triple (x, y, 1) by k to get a solution (kx, ky, k) and
likewise, we can multiply a triple (kx, ky, k) by k−1 to get another solution (x, y, 1), we
find that (x, y, 1) is a triple if and only if (kx, ky, k) is also a triple. Therefore, there
must be an equal number of solutions N for all nonzero k.
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It follows that given the number of solutions M of the form (x, y, z) with z 6≡ 0 to
x2 + y2 ≡ z2 (mod p) every z will have M

p−1 solutions (x, y)
The previous proposition gives us a really surprising result about the distribution of

Pythagorean triples (x, y, z). We find that they are equally distributed among the nonzero
values of z. This fact will be very useful in finding the number of total Pythagorean
triples.

Theorem 4.6. For any k 6≡ 0 (mod p), the number of solutions to x2 + y2 ≡ k2 is

p−
(
−1
p

)
.

Proof. By Proposition 3.5 we know that the number of solutions to x2 ≡ a (mod p) is

1 +
(
a
p

)
. This tells us that number of solutions is given by,

p−1∑
y=0

1 +

(
k2 − y2

p

)
.

By Theorem 3.7 we expand to find that the previous sum is equal to

p+

(
−1

p

) p−1∑
y=0

(
y + k

p

)(
y − k
p

)
.

Each (y − k) is uniquely represented by a y′ (mod p), so we can substitute to get that

p+

(
−1

p

) p−1∑
y′=0

(
y′

p

)(
y′ + 2k

p

)
.

From here we can another substitution of a = 2k because each value modulo p is
divisible by 2. Therefore, we obtain

p+

(
−1

p

) p−1∑
y′=0

(
y′

p

)(
y′ + a

p

)
.

By Proposition 4.4 we have that

p+

(
−1

p

) p−1∑
y′=0

(
y′

p

)(
y′ + a

p

)
= p−

(
−1

p

)
.

This means that if we randomly choose x and y mod p, the value of x2 + y2 is equally

likely to be each of the p − 1 nonzero values mod p. It follows that
(
x2+y2

p

)
is equally

likely to be 1 and −1.
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Corollary 4.7. The total number of Pythagorean triples mod p is p2.

Proof. We add the number of solutions (x, y) to x2 + y2 ≡ 0 from Proposition 4.2 to the
number of solutions (x, y, z) to x2+y2 ≡ z2 (mod p) for each nonzero z from Theorem 4.6.
We get

p+ (p− 1)

(
−1

p

)
+ (p− 1)

(
p−

(
−1

p

))
= p2.

It follows that a random (x, y, z) have probability 1
p

of being a Pythagorean triple.

5 Acknowledgements

We used An Introduction to the Thoery of Numbers by G.H. Hardy as our number theory
reference throughout the program. We would like to thank PRIMES Circle for creating
this incredible opportunity, and Peter Haine for proof-reading our work. We’d also like
to thank our parents for their support. But most of all, a huge shout-out to our mentor,
Maya Sankar, for dealing with our outrageous theorem labels and for her dedication in
teaching us number theory with patience and enthusiasm.

9


	Introduction
	Preliminaries
	Legendre Symbols
	Pythagorean Triples
	Acknowledgements

