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1. INTRODUCTION

In this paper, we explore both combinatorial and classical game theory (see Definitions 2.1
and 3.1). Combinatorial game theory is the study of games like Chess or Checkers, where
two players alternate turns until one wins the game. Classical game theory studies games
like Rock Paper Scissors, where each player simultaneously makes a single decision without
knowing the decision of the other player. We will focus on the basic definitions and terms of
game theory by diving deeper into two original games: Roads and One Four All. In Section
2, we will discuss the combinatorial side of game theory with Roads, and in Section 3, we
will discuss the classical side with One Four All.

2. COMBINATORIAL GAME THEORY

2.1. Basic Definitions. In this section, we will begin by introducing formal definitions that
will help us transform these game boards into strategies for winning.

Definition 2.1 ([1, Definition 1.5]). A combinatorial game is a 2-player game played between
Louise and Richard. A combinatorial game consists of:

(1) A set of possible positions which are the state of the game.

(2) A mowve rule indicating for each position what positions Louise can move to and what
positions Richard can move to.

(3) A win rule indicating a set of terminal positions where the game ends. Each terminal
position has an associated outcome, either Louise wins and Richard loses, Louise loses
and Richard wins, or it is a draw.

Example 2.2. In the game Tic there is a 3 by 1 array. To move, Louise marks an empty
square with a o and Richard with a x. If either player gets two adjacent squares marked
with his or her symbol, then they win. The game Tic is clearly an example of a combinatorial
game as it satisfies all three conditions.

The next thing to consider is the condition for winning. Games can be classified by their
condition for winning.

Definition 2.3 ([1, p.3]). A combinatorial game is called a normal play game when the last
player to make a move wins.

Example 2.4. Checkers is an example of a normal play game.

All of the combinatorial games played in this paper are normal play games. Games can
also be categorized into the types of moves made by each player.

Definition 2.5 ([1, p.26]). An impartial game is a normal play game in which the available

moves for Richard and Louise are always the same.
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Example 2.6. Tic is be an example of an impartial game as the available moves for Richard
and Louise are the same.

Definition 2.7 ([1, p.26]). A partizan game is a normal play game in which the available
moves for Richard and Louise are not the same.

Example 2.8. An example of a partizan game is Cut the Cake. In Cut the Cake there
is a cake which is rectangular and has horizontal and vertical lines running along the cake
indicating where the cake can be cut. Richard can only make horizontal cuts and Louise
can only make vertical cuts. From each position in Cut the Cake, Richard and Louise have
different available moves, so the game is partizan.

Convention 2.9. When considering a partizan game, we call the players Louise and Richard
(for left and right). When the game is impartial, we call the players Richard and Roberto
(for right and right).

Definition 2.10 ([1, p.7]). A strategy is a set of decisions indicating which move to make
at each position where that player has a choice.

Definition 2.11 ([1, p.7]). A winning strategy is a strategy with the property that following
it guarantees a win.

In order to expedite the process of finding a winning strategy, it is important to classify
and label positions.

Definition 2.12. Positions Types:

(1) Type L: Louise has a winning strategy no matter who goes first.

(2) Type R: Richard has a winning strategy no matter who goes first.

(3) Type N: The Next player has a winning strategy.

(4) Type P: The Previous player or the second player has a winning strategy.

Definition 2.13 ([1, Definition 2.4]). If o and /8 are positions in a normal-play game, then
we define o 4+ 3 to be a sum of positions. To move in «a + [, a player chooses one of the
components in which to move. So, for instance if a player may move from « to o', then the
player may move from a+ 3 to o/ + 5. Similarly, if a player can move from 3 to ', then he
or she may move from o + 8 to o + 3

Definition 2.14 ([1, Definition 2.9]). Two positions a and o’ in normal play games are
called equivalent when for every position 3, the two positions a + 5 and o’ + [ have the
same type.

2.2. Rules for Roads. In this section we introduce our original normal play combinatorial
game, Roads. The game starts with a set of vertices that are connected by edges, or roads.
A player can make a move by going down a road and must continue to turn left or right onto
other roads until there are no more turns to take. In this way, this game can be partizan or
impartial.
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FI1GURE 1. Examples of game boards

There are two separate games: Partizan Roads and Impartial Roads. Both games have
the same win rule, but the move rules are different.

In Partizan Roads, one player may only make left turns (Louise) while the other player
may only make right turns (Richard). While it seems like the other player can make the
exact same move by starting where the other player stopped, there is a counterexample of

FIGURE 2. Partizan positions in Partizan Roads

Let’s look at the board on the left. The move in question is the middle road. In Partizan
Roads, Louise can take just the middle road, while Richard must take one of the side roads
as well if he is to take the middle road. This is because the game requires that the player
continues to turn onto other roads until there are no more turns to take. In the case of
Louise, once she takes the middle road, there are no more left turns to make, meaning that
she must stop. In the case of Richard, once he takes the middle road, he must take the right
turn and go down the next road.

The board on the right is very similar, except that the roles are flipped. On this game
board, Richard can take just the middle road but Louise cannot, hence why this version of
the game is partizan.

In Impartial Roads, both players can only make right turns (Richard and Roberto). This
is clearly impartial, as both players have the same set of moves.

This paper will analyze Impartial Roads between Roberto and Richard, who may only
make right turns, as well as Partizan Roads between Louise and Richard, who may make
left and right turns, respectively.

2.3. Roads in Convex Polygons. We now investigate Roads as played on convex polygons.

Theorem 2.15. The game Partizan Roads, when played on convex polygons, is impartial.
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Proof. Suppose Richard makes a move from position F, at a point A, takes a series of right
turns and ends at point B reaching a position P;. Louise can also make a move at position
Py but she starts at point B then retraces Richard’s moves backwards making a series of left
turns and ends at point A with of a position of P;. Vice versa if Louise starts. Therefore no
matter what position Louise or Richards are given to move from they can always end in the
same position by retracing each others steps backwards. 0

Theorem 2.16. In Partizan Roads, all positions which are convex polygons are type N.

Proof. Let’s first consider the properties of convex polygons in the context of the partizan
version of Roads. Depending on the player, the turns are all left turns or all right turns.
This means that both players are able to take all of the roads in a single move. Suppose
Louise goes first. Although Louise can only make left turns, there are only left turns to
take. Similarly, if Richard goes first, he can always take all of the roads, because they will
all be right turns. This means that the player who goes first has a winning strategy, and
any convex polygon is type V. 0

2.4. Zig-Zag Roads. Zig-Zag Roads are a type of position in both Impartial and Partizan
Roads. These positions consist of a number of edges/roads, which, when driven down,
contain alternating left and right turns. Hence, the position is a familiar “zig-zag” shape.

2.4.1. Impartial Version.
Lemma 2.17. Symmetry: In an impartial game, any position of the form Z + Z is type P.

Proof. Proof by induction on n, the number of edges in Z. As a base case, suppose n = 0.
Then the first player loses, so this is type P.

Inductive step: Assume the result holds true for Z with fewer than n edges. Suppose Z
is of size n then Roberto makes a move leaving a position Z’ + Z and Richard copies that
move on Z which leaves the position Z’ + Z’ which has less then n edges therefore proving
that Z + Z is type P. 0

Lemma 2.18. Let Z be a zig-zag with an even number of edges and ZV be it’s flip. In an
impartial game of roads, Z is equivalent to Z" if and only if Z has an even amount of edges
i an impartial game of Roads.

AR

Figure 2: Examples of Z (left) and ZV (right).

Proof. There are two possible ways to construct Z¥ from Z: one is to flip Z vertically and
the other is to rotate Z around its center vertex by 180 degrees. Considering that a zig-zag
with an odd number of edges does not have a center vertex, it cannot, therefore, be rotated
in the same manner as an even-edged zig-zag.
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As Richard and Roberto are the chosen players for an impartial game of Roads, they can
only turn right, and therefore, take any negative sloped edge in a zig-zag without having to
turn and take an additional edge. Hence, trying to take a positive sloped edge of a zig-zag
will force them to take two edges. Keeping this in mind, suppose that Richard takes the
second edge (from left to right) of Z from Figure 2. If we define a flip for an impartial game
of Roads to be it’s vertical flip, Richard’s move lands on the second edge of Z" in Figure 2.
However, this edge has a positive slope, so he must, in this case, take at least two edges.

In order for two positions to be equivalent, they must act the same way under summation,
meaning that no matter what position you add to them, the result will be the same. This is
the case if a player can act the same way on the two positions, which, with the definition of
Z" as the vertical flip of Z, does not hold. However, defining Z" as the rotation of Z around
it’s middlemost vertex by 180 degrees, translates Richards possible moves from Z to ZV.

When rotating Richards previous move, taking the second, negative sloped, edge from 7,
we find it lands on the third edge of ZV. This edge has a negative slope, so Richard can take
it without having to make a turn.

To further delve into the rotation of the move, supposing Richard took the second edge of
Z from top to bottom, the parallel on Z¥ would be to take the third edge from bottom to
top, and vice versus. This move also results in two equivalent positions, sums a two edged
zig-zag and a single edged zig-zag.

AR

Notice that the two single edged zig-zags of Z and Z" are positioned the same way. When
a single edge is taken from a larger even edged zig-zag, Z, the result will be the sum of an
odd edged zig-zag, o, and an even edged zig-zag, (3, if the single edge is not at either end
of the zig-zag. Together they are o + 3. When ZV is defined by rotation and the respective
edge is taken accordingly, the odd edged part of ZV, ', will be equivalent to @ because they
will have the same number of edges and the same orientation. The position created from
ZV will be o + [, with 8/ being 3Y. Therefore, o’ + ' is equivalent to o+ V. Since 3 has
an even amount of edges, 8 and 3Y will be equivalent, making o + 3 and o/ + 3 equivalent.
This further proves that Z and Z" are equivalent if and only if they are even edged, as any
move on Z will give the same position as if it were made on Z" using the rotation definition.
If the edge is taken from the end of Z and from ZV, the resulting odd edged zig-zags will
still be positioned the same and will be equivalent. O

Theorem 2.19. There are three cases, some of which contain sub cases, that dictate the
winning strateqy in an impartial game of Roads that takes the form of a zig-zag.

(1) Case 1: Given a zig-zag with 2(2n) + 2 edges, the winning strategy is to remove the
maddlemost two edges.

(2) Case 2: Given a zig-zag with 2(2n) + 1 edges, the winning strategy is to remove the
middlemost edge, if the 1st player can do so.
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(8) Case 3: Given a zig-zag with 2(2n+ 1) + 1 edges, the winning strategy is to take the
middlemost edge if the 1st player can do so.

Proof. This proof will go through all three cases in Theorem 2.18.

Case 1: Given a zig-zag with 2(2n) + 2 edges, the winning strategy is to remove the
middlemost two edges. This provides the next player, Roberto if Richard goes first and vice
versus, with two even-edged, equivalent zig-zags, which by Lemma 1.1 sum to type P, giving
the 1st player the winning strategy.

Case 2: Given a zig-zag with 2(2n) + 1 edges, the winning strategy is to remove the
middlemost edge, if the 1st player can do so. The case in which the 1st player will not be
able to remove the middlemost edge, will be when the zig-zag is type X. A type X zig-zag
in Impartial Roads is one where the middlemost edge has a positive slope, forcing either
Richard or Roberto to take at least two edges if they act on it.

In the case that the zig-zag is not type X, the second player is left with two even edged
zig-zags, one Z, and the other ZV based on the definitions in Lemma 2.18. By Lemma 2.18,
Z and ZV are equivalent, so their sum, by Lemma 2.17, is type P. As the 1st player moves
to a position of type P by taking the middlemost edge, they have a winning strategy.

Case 3: Given a zig-zag with 2(2n + 1) + 1 edges, the winning strategy is to take the
middlemost edge if the 1st player can do so. If the zig-zag is type X, the winning strategy
is unknown and the game may be of type P.

In the case that the zig-zag is not type X, the second player is left with the sum of two
equivalent, odd-edged zig-zags. This sum, by Lemma 2.17 is type P, giving the 1st player a
winning strategy. 0

Remark 2.20. Given a zig-zag with 2(2n + 1) + 2 edges, the winning strategy is unclear.
Taking the middle two edges will result in two odd edged zig-zags that are not equivalent
because they are each others’ flips (in other words, Z and ZV) by Lemma 2.18.

Example 2.21. To illustrate Remark 2.20, consider the case n = 1, in which case we have
a zig-zag with 2(2 + 1) + 2 = 8 edges (see Figure 3). Removing the two middle edges yields

FIGURE 3. A zig-zag with eight edges.

the position shown in Figure 4; this position is of the form Z + ZV, where Z has three edges.
Therefore, Lemma 2.18 gives that Z and Z" are not equivalent. It follows that the position
in Figure 4 is not necessarily type P, making the winning strategy from the position in
Figure 3 unclear.

2.4.2. Partizan Version.

Lemma 2.22. The position Z+Z", where Z" is defined as the flip of Z by process of vertical
flipping, is type P.
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FIGURE 4. A position of the form Z + ZV, where Z has three edges.

Proof. Suppose that Z is some zig-zag with n edges in a Partizan game of Roads, and ZV is
the position resulting from it being flipped vertically.

If ZV is defined as the vertical flip of Z, any move on Z can be translated onto ZV. As
both players, Louise and Richard can take two edges the same way in a zig-zag, we only
need to look at the translation of a move that takes one edge.

Richard can only take negative sloped single edges without taking anymore, and Louise
can only take positive sloped single edges without taking anymore. Suppose we have a zig-
zag, Z, that contains at least one negatively sloped edge. In ZV, the vertical flip of Z, this
edge would be positive sloped. Therefore, what Richard can take on Z, Louise can take on
Z". In the case that Z has no negative sloped single edges, the opposite is true: what Louise
can take on Z, Richard can take on ZV.

Using an argument of symmetry, it is found that in the Partizan game of Roads, Z + ZV
is type P. [

Theorem 2.23. If there is an even number of roads in a zig-zag, the first player can win by
taking the two middle edges.

Proof. Suppose we have a zig-zag with 2n edges.

If we were to take away the two middle edges of this zig-zag, we would be left with two
zig-zags with n edges, where one zig-zag is denoted as Z and the other is denoted as ZV. In
this case, ZV is defined as Z flipped horizontally. As we established earlier, and Z + ZV is a
type P, meaning that the original zig-zag is type N.



SOFIA MROWKA, ELIZABETH ZHONG, AND NATASA ZUPANSKI

SR A

2.5. Conjectures. This subsection will outline a few patterns which we have noticed within
the games of Impartial and Partizan Roads, but which we have not been able to make formal
theorems and proofs of. We will also outline further research that may be done on the games
of Impartial and Partizan Roads.

A

The above figure is the sum of a single edged zig-zag and a four edged zig-zag. Evaluating
this position in Impartial Roads finds it to be type P. Other similar positions of type P are
the sum of a single edged zig-zag and a seven edged zig-zag, as well as the sum of two single
edged zig-zags.

Furthermore, the evaluation of the sums of zig-zags within the Impartial game of Roads
would benefit the classification of singular zig-zags into different types. It may resolve some
of the exceptions to the four cases detailed in Impartial Roads.

For zig-zags in Partizan Roads, even edged zig-zags are proven to be type N. In addition,
there is an abundance of odd edged zig-zags which are also type N. This often results from
one player being able to take the middlemost single edge, resulting in the sum of two even
edged zig-zags, which, by Lemma 2.18, is a position of type P. Meanwhile, the other player
can often move to a sum position of their type, being L if they are Louise and R if they
are Richard. Since each player, if they move first, has a winning strategy, these odd edged
zig-zags are often type V.

Finding the sums of zig-zags within Partizan Roads which are of type L, R, or P would
allow greater classification of singular zig-zags within the game. Sums with 2(2n) 4+ 1 edges
will result in a type P if a player can remove the middlemost edge because this will give
a position of Z + ZV, which is type P. However, if one player can take the middlemost
edge, the other cannot in Partizan Roads. Because of this, it requires further exploration to
determine which zig-zags with 2(2n) + 1 edges are which type. Furthermore, zig-zags with
2(2n+1) 4 1 edges are also of an undetermined type because removing the middlemost edge
doesn’t necessarily result in a position of type P, and if one player can do this, the other
cannot.

A next step in analyzing Roads would be to connect its two versions: Impartial Roads
and Partizan Roads. While theorems and proofs may not be easily transferable from one of
these games to another, Impartial Roads essentially deals with a game between Richard and
Richard. If nothing else, the analysis of Impartial Roads shows what moves Richard may be
able to make in Partizan Roads from a given position.
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3. CLASSICAL GAME THEORY

3.1. Basic Definitions. This section overviews the basic definitions that pertain to Clas-
sical Game Theory and which will help us analyze our original game, One Four All.

Definition 3.1 ([1, Pg.89-90]). Classical game theory is the study of games in which both
players simultaneously, without knowledge of the other player’s decision, choose a course of
action, resulting in a single outcome.

Remark 3.2. In classical game theory there are two players Rose and Colin. Rose can
choose a row and Colin can choose a column in a matrix representing a classical game.

Definition 3.3 ([1, Pg. 90]). A zero-sum matriz game is a game played between Rose and
Colin. There is a fixed matrix that is known to both Rose and Colin they secretly choose
a row or a column (Rose will choose a row and Colin will choose a column). Given Rose
chooses some row, 7, and Colin chooses some column j, in some matrix A, the payoff is the
(1,7) entry of matrix A. Rose wants the highest possible payoff and Colin wants the lowest
possible payoff.

Definition 3.4 ([1, Pg. 92]). Dominance is used in order to simplify a zero-sum matrix
game. When given a zero-sum matrix game, we can use dominance by eliminating the rows
with the lowest payoff and the columns with the highest payoff. We can do this because
Rose always wants the highest payoff so a row in which each value in the row is smaller then
a corresponding value in another of the matrix is no use to Rose as it will never be beneficial
for Rose to chose that row. The opposite goes for Colin who always wants the lowest payoff.

Definition 3.5 ([1, Pg. 90]). A mized strategy is a strategy in which Rose (resp. Colin)
picks row (resp. column) with certain probabilities. All the entries of a mixed strategy sum
to one.

Definition 3.6 ([1, Pg. 100]). For a given mixed strategy p, which Rose will play, the
guarantee is the minimum entry pA, with A as some matrix. For Colin, the guarantee is the
highest entry of gA given a mixed strategy ¢, and a matrix, A.

Throughout this section we will make use of the following theorem which will describe
how to solve a 2 x 2 matrix.

Theorem 3.7 ([1, Pg. 111]). Von Nuemann Minimiax Theorem: Every zero-sum matriz
game has a value v and pair mized strategies p for Rose and q for Colin so that both p and
q have a guarantee of v.

The value v, together with p and q, is called a Von Neumann solution to the zero-sum
matrix game.

Proposition 3.8 ([1, Proposition 6.4]). For every 2 x 2 zero-sum matriz game A, one of
the following holds.

(1) Iterated removal of dominated strategies reduces the matriz to a 1 x 1 matriz [v]. The
number v and the associated pure row and column strategies form a Von Neumann
Solution.

(2) Rose and Colin have mized strategies p and q equating the opponents’ results. Then

pA:[U U]
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-]

The number v, together with p and q, form a Von Neumann solution.

and

3.2. One Four All. We first describe the rules for our game, One Four All. Our game
starts with a 2 x 2 matrix containing the values 1, 2, 3, and 4 that looks like this:

i)

Rose has a chip valued at +1 and Colin has a chip valued at —1. They each place a there
chip down at the same time. The score is calculated by taking the the value of the chip,
multiplying it by its corresponding matrix value and then adding the two together. However,
if Rose and Colin choose to put their chips on 4 and 1, then the score is -3. By going through
our game and looking at possible outcomes, we get the following payoff matrix:

0 -1 -2 -3
1 0 -1 -2
2 1 0 -1
-3 2 1 0

As you can see, there is some dominance in this matrix that will allow for it to be simplified.
After using dominance, we get the following 2 x 2 matrix:

5]

The next step in solving this zero-sum matrix game is to use Von Neumann’s Minimax
Theorem. In order to do that, we are going to multiply our matrix first on the left by a
1 x 2 matrix with the entries p and 1 — p; we will then solve for p by setting the entries in
the resulting matrix equal to each other. Next, we will then repeat this process but now
solving for Colin’s ¢ value by multiplying our matrix on the right by a 2 x 1 matrix with the
entries ¢ and 1 — ¢g. We will then plug p and ¢ into their respective matrices and multiply
everything out. This will give us our guarantees for Colin and for Rose, which we expect to
be equal to the same value v (by Proposition 3.8). Then v, p, and ¢ define a Von Neumann
solution to One Four Al

We begin this process as follows:

[ 1—p][_23 _01]=[5p—3 ]

By setting the two entries equal, we get 5p — 3 = —p; therefore, p = 1/2. Repeating the
process with ¢ yields the following:

R R

Setting the two entries of the resulting matrix equal yields 3¢ — 1 = —3q; therefore, ¢ = 1/6.
In a final step we plug p and ¢ back in. By plugging p back in we get the following:

[1/2 1/2}{_23 _01}—[—1/2 -1/2] .
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The entries in the resulting matrix are equal; therefore, Rose has a guarantee of —1/2. Now
by plugging ¢ back in we get the following:

1/6 2 -1 | —-1/2
5/6 -3 0 | | -1/2
The two entries in the matrix are again the same; therefore, Colin has a guarantee of —1/2.

Conclusion: Both Rose and Colin have a guarantee of —1/2. That means that in our
matrix game, Colin has the winning strategy, because no matter what Rose does Colin is
guaranteed —1/2.
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