Group testing via zero-error channel capacity

Sam Florin Matthew Ho Rahul Thomas Mentor: Dr. Zilin Jiang

Greenwich High School, Palo Alto High School, Cherry Creek High School

October 17-18, 2020
MIT PRIMES Conference

Introduction to Group Testing

- What is group testing? ${ }^{1}$

${ }^{1}$ This image is from Wikimedia Commons, by CheChe

Introduction to Group Testing

- What is group testing? ${ }^{1}$

- Origin of group testing
${ }^{1}$ This image is from Wikimedia Commons, by CheChe

Single Item Group Testing

Natural question: n people we want to test for COVID-19, there is 1 sick person. How many tests needed?

Single Item Group Testing

Natural question: n people we want to test for COVID-19, there is 1 sick person. How many tests needed?

- Binary search gives us an algorithm that requires $\left\lceil\log _{2}(n)\right\rceil$ steps.

Single Item Group Testing

Natural question: n people we want to test for COVID-19, there is 1 sick person. How many tests needed?

- Binary search gives us an algorithm that requires $\left\lceil\log _{2}(n)\right\rceil$ steps.
- This turns out to be optimal.

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

- Idea: What if we just selected half of these n people? If both or none of the infected people are in this subset, we recurse. Otherwise, do binary search on each half. This gives an upper bound of about $2 \log _{2}(n)$.

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

- Idea: What if we just selected half of these n people? If both or none of the infected people are in this subset, we recurse. Otherwise, do binary search on each half. This gives an upper bound of about $2 \log _{2}(n)$.
- Is there some way to "parallelize" the search in the two halves?

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

- Idea: What if we just selected half of these n people? If both or none of the infected people are in this subset, we recurse. Otherwise, do binary search on each half. This gives an upper bound of about $2 \log _{2}(n)$.
- Is there some way to "parallelize" the search in the two halves?

Our approach

- Connection to binary adder channel, and characterization of channel via an optimization problem;

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

- Idea: What if we just selected half of these n people? If both or none of the infected people are in this subset, we recurse. Otherwise, do binary search on each half. This gives an upper bound of about $2 \log _{2}(n)$.
- Is there some way to "parallelize" the search in the two halves?

Our approach

- Connection to binary adder channel, and characterization of channel via an optimization problem;
- Simplify and numerically solve the optimization problem.

2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

- Idea: What if we just selected half of these n people? If both or none of the infected people are in this subset, we recurse. Otherwise, do binary search on each half. This gives an upper bound of about $2 \log _{2}(n)$.
- Is there some way to "parallelize" the search in the two halves?

Our approach

- Connection to binary adder channel, and characterization of channel via an optimization problem;
- Simplify and numerically solve the optimization problem.

Main result The best algorithm gives about $1.266 \log _{2}(n)$ tests.

Binary Decision Tree for Single Item Testing

Testing procedure for $\{1,2, \ldots, 8\}$

Ternary Decision Tree for Double Item Testing

Testing procedure for $\{1,2,3,4\}$

Two-User Binary Adder Channel with Feedback

Efficiency of the Channel

Definition

The channel capacity c is the maximum rate at which bits of information can be sent across the channel.

Efficiency of the Channel

Definition

The channel capacity c is the maximum rate at which bits of information can be sent across the channel.

- The optimal number of pooled tests is $\sim 2 \log _{2} n / c$.

Efficiency of the Channel

Definition

The channel capacity c is the maximum rate at which bits of information can be sent across the channel.

- The optimal number of pooled tests is $\sim 2 \log _{2} n / c$.
- Computing c is equivalent to an optimization problem involving the entropy function

$$
H\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\sum_{i=1}^{n} x_{i} \log _{2} x_{i}
$$

and the related function

$$
L(x)=H\left(\frac{1-x}{2}, x, \frac{1-x}{2}\right)
$$

Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is equivalent to the following optimization problem:

Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is equivalent to the following optimization problem:
Maximize: $\quad \sum_{i=1}^{n} p_{i}\left(H\left(a_{i}, \bar{a}_{i}\right)+H\left(b_{i}, \bar{b}_{i}\right)\right)$ given

Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is equivalent to the following optimization problem:
Maximize: $\quad \sum_{i=1}^{n} p_{i}\left(H\left(a_{i}, \bar{a}_{i}\right)+H\left(b_{i}, \bar{b}_{i}\right)\right)$ given

- $0 \leq a_{i}, b_{i}, p_{i} \leq 1$,

Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is equivalent to the following optimization problem:
Maximize: $\quad \sum_{i=1}^{n} p_{i}\left(H\left(a_{i}, \bar{a}_{i}\right)+H\left(b_{i}, \bar{b}_{i}\right)\right)$ given

- $0 \leq a_{i}, b_{i}, p_{i} \leq 1$,
- $\sum_{i=1}^{n} p_{i}=1$

Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is equivalent to the following optimization problem:
Maximize: $\quad \sum_{i=1}^{n} p_{i}\left(H\left(a_{i}, \bar{a}_{i}\right)+H\left(b_{i}, \bar{b}_{i}\right)\right)$ given

- $0 \leq a_{i}, b_{i}, p_{i} \leq 1$,
- $\sum_{i=1}^{n} p_{i}=1$
- $L\left(\sum_{i=1}^{n} p_{i}\left(a_{i} \bar{b}_{i}+\bar{a}_{i} b_{i}+2 c_{i}\right)\right) \geq$
$\sum_{i=1}^{n} p_{i} H\left(a_{i} b_{i}-c_{i}, a_{i} \bar{b}_{i}+c_{i}, \bar{a}_{i} b_{i}+c_{i}, \bar{a}_{i} \bar{b}_{i}-c_{i}\right)$ for all points $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$ that make the terms inside $H(\cdot, \cdot, \cdot, \cdot)$ non-negative.

Bounding n

- Is there some n_{0} such that, for $n>n_{0}$, the maximum achieved in the optimization problem doesn't increase?

Bounding n

- Is there some n_{0} such that, for $n>n_{0}$, the maximum achieved in the optimization problem doesn't increase?
- Dueck's paper says that $n_{0}=6$ works. But can we do better?

Uniqueness Theorem

We wish to show that $\widetilde{\boldsymbol{c}}$, defined as the \boldsymbol{c} that causes the inequality to be as tight as possible, is uniquely defined. Furthermore, we wish to show it can be defined by taking partial derivatives of the inequality bounding \boldsymbol{c}.

Reducing n_{0} to 3

In order to reduce n_{0} down to 3 , we want to show that any possible $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{p}$ with $n \geq 4$ can be adjusted by changing \boldsymbol{p} to \boldsymbol{p}^{*} while preserving

- $\sum_{i=1}^{n} p_{i}^{*}=1$
- $\sum_{i=1}^{n} p_{i}^{*}\left(a_{i} \bar{b}_{i}+\bar{a}_{i} b_{i}+2 \widetilde{c}_{i}\right)$ is fixed
- $\sum_{i=1}^{n} p_{i}^{*} H\left(a_{i} b_{i}-\widetilde{c}_{i}, a_{i} \bar{b}_{i}+\widetilde{c}_{i}, \bar{a}_{i} b_{i}+\widetilde{c}_{i}, \bar{a}_{i} \bar{b}_{i}-\widetilde{c}_{i}\right)$ is fixed
- $\sum_{i=1}^{n} p_{i}^{*}\left(H\left(a_{i}, \bar{a}_{i}\right)+H\left(b_{i}, \bar{b}_{i}\right)\right)$ is non-decreasing

It can be shown that, if $n \geq 4$, then p^{*} can be created such that $\exists i$ with $p_{i}^{*}=0$.

Conjectures

- We suspect $n=1$ suffices and that the maximum occurs at $a_{1}=b_{1}=\frac{\log (2+\sqrt{3})-\log (2)}{2 \log (2+\sqrt{3})} \approx 0.23684$ giving a maximum of ≈ 1.57948.

Conjectures

- We suspect $n=1$ suffices and that the maximum occurs at $a_{1}=b_{1}=\frac{\log (2+\sqrt{3})-\log (2)}{2 \log (2+\sqrt{3})} \approx 0.23684$ giving a maximum of ≈ 1.57948.
- This would mean 2 defects out of n could be found with $\left(\frac{2}{H\left(a_{1}, \overline{a_{1}}\right)+H\left(b_{1}, \bar{b}_{1}\right)}+O(1)\right) \log _{2}(n) \approx 1.266 \log _{2}(n)$ tests.

Acknowledgements

We'd like to thank the following people/organizations/animals:

- Our mentor, Dr. Zilin Jiang
- The PRIMES program
- Parents
- Sam's cat

References I

EM. Aigner.
Search problems on graphs.
Discrete Appl. Math., 14(3):215-230, 1986.
A.Ya. Belokopytov and V.N. Luzgin.

Block transmission of information in a summing multiple access channel with feedback.
Probl. Inf. Transm., 23(4):347-351, 1987.
固 G. Dueck.
The zero error feedback capacity region of a certain class of multiple-access channels.
Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 14(2):89-103, 1985.

References II

E. Gargano, V. Montouri, G. Setaro, and U. Vaccaro.

An improved algorithm for quantitative group testing. Discrete Applied Mathematics, 36(3):299 - 306, 1992.
Zilin Jiang, Nikita Polyanskii, and Ilya Vorobyev.
On capacities of the two-user union channel with complete feedback. IEEE Trans. Inform. Theory, 65(5):2774-2781, 2019.
E Zhen Zhang, T. Berger, and J. Massey.
Some families of zero-error block codes for the two-user binary adder channel with feedback.
IEEE Transactions on Information Theory, 33(5):613-619, September 1987.

