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Introduction to Group Testing

What is group testing? 1

Origin of group testing

1This image is from Wikimedia Commons, by CheChe
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Single Item Group Testing

Natural question: n people we want to test for COVID-19, there is 1 sick
person. How many tests needed?

Binary search gives us an algorithm that requires dlog2(n)e steps.

This turns out to be optimal.
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2 Item Group Testing

Next natural question: what happens if 2 of n people are sick?

Idea: What if we just selected half of these n people? If both or none
of the infected people are in this subset, we recurse. Otherwise, do
binary search on each half. This gives an upper bound of about
2 log2(n).

Is there some way to “parallelize” the search in the two halves?

Our approach

Connection to binary adder channel, and characterization of channel
via an optimization problem;

Simplify and numerically solve the optimization problem.

Main result The best algorithm gives about 1.266 log2(n) tests.
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Binary Decision Tree for Single Item Testing
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Ternary Decision Tree for Double Item Testing
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Two-User Binary Adder Channel with Feedback
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Efficiency of the Channel

Definition

The channel capacity c is the maximum rate at which bits of information
can be sent across the channel.

The optimal number of pooled tests is ∼ 2 log2 n/c .

Computing c is equivalent to an optimization problem involving the
entropy function

H(x1, x2, . . . , xn) = −
n∑

i=1

xi log2 xi

and the related function

L(x) = H

(
1− x

2
, x ,

1− x

2

)
.
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Channel Optimization Problem

Using bounds on channel capacity by Dueck, the group testing problem is
equivalent to the following optimization problem:

Maximize:
∑n

i=1 pi (H(ai , āi ) + H(bi , b̄i )) given

0 ≤ ai , bi , pi ≤ 1,∑n
i=1 pi = 1

L
(∑n

i=1 pi (ai b̄i + āibi + 2ci )
)
≥∑n

i=1 piH
(
aibi − ci , ai b̄i + ci , āibi + ci , āi b̄i − ci

)
for all points

c = (c1, ..., cn) that make the terms inside H(·, ·, ·, ·) non-negative.
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Bounding n

Is there some n0 such that, for n > n0, the maximum achieved in the
optimization problem doesn’t increase?

Dueck’s paper says that n0 = 6 works. But can we do better?
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Uniqueness Theorem

We wish to show that c̃ , defined as the c that causes the inequality to be
as tight as possible, is uniquely defined. Furthermore, we wish to show it
can be defined by taking partial derivatives of the inequality bounding c .
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Reducing n0 to 3

In order to reduce n0 down to 3, we want to show that any possible a,b,p
with n ≥ 4 can be adjusted by changing p to p∗ while preserving∑n

i=1 p
∗
i = 1∑n

i=1 p
∗
i (ai b̄i + āibi + 2c̃i ) is fixed∑n

i=1 p
∗
i H
(
aibi − c̃i , ai b̄i + c̃i , āibi + c̃i , āi b̄i − c̃i

)
is fixed∑n

i=1 p
∗
i (H(ai , āi ) + H(bi , b̄i )) is non-decreasing

It can be shown that, if n ≥ 4, then p∗ can be created such that ∃i with
p∗i = 0.
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Conjectures

We suspect n = 1 suffices and that the maximum occurs at

a1 = b1 = log(2+
√

3)−log(2)

2 log(2+
√

3)
≈ 0.23684 giving a maximum of

≈ 1.57948.

This would mean 2 defects out of n could be found with(
2

H(a1,ā1)+H(b1,b̄1)
+ O(1)

)
log2(n) ≈ 1.266 log2(n) tests.
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