PERFORMANCE ANALYSIS AND
OPTIMIZATION OF SKIP LISTS FOR
MODERN MULTI-CORE ARCHITECTURES

Anish Athalye and Patrick Long
Mentors: Austin Clements and Stephen Tu

3'd annual MIT PRIMES Conference

Sequential Origins

- Research on data structures produced several fast
sequential designs

- Not designed for concurrent access

- In the 90's, many extended to support concurrent
operations
- Multi-core processors changing

- Exponential growth in # of cores
- New architectures

Parallelism is the future

10 . Transistors

5 i (thousands)
PO | oo sesmendiasiminndemsnsisindosssmsssndess il st aes i vgenagfeo tasaens

5 f
10 %

. Single-thread

4 . Performance
10 © (SpeciINT)

3 Frequency
10 7 (MHz)

2 Typical Power
10 “ (Watts)

1 " Number of
10 ‘" Cores

0
10

1975 1980 1985 1990 1995 2000 2005 2010 2015

Source Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Contributions

- Focused on the skip list

- Techniques to improve scalabllity

- Basic analytical model of scalability performance
- Analyses of implementations in Java and C++

MODERN MULTI-CORES

Cache Hierarchy

Socket 1 Socket 2

Registers/Buffers
~1 cycle <1ns

~3 cycles ~1ns

~12 cycles ~3ns

~38 cycles ~12ns

QPI ~40ns

~B65ns

Source: http://mechanical-sympathy.blogspot.co.uk/2013/02/cpu-cache-flushing-fallacy.html

Cache Coherence and Ownership

- Concurrent access and mutation presents a challenge

- Cache coherence protocol

- Cores must take ownership to mutate data
- Concurrent writes cause contention

- Cores must have up-to-date copy to read data
- Requires cache line transfer if data modified

- Cache contention creates bottlenecks

SKIP LISTS

L
Skip Lists

- Probabilistic data structure implementing an ordered set
- 3 operations: insert, delete, lookup
- Average case complexity O(log n)
- Stores a sorted list
- Hierarchy of linked lists connect increasingly sparse
subsequences of elements
- Randomized with geometric distribution for O(log n) performance
- Auxiliary lists allow for efficient operation
- No global updates (rebalancing, etc.) due to probabilistic nature

. Can be efﬁciently para”elized Bl nodes [T additional pointers /’search path

L
Skip Lists

. nodes . additional pointers f search path

)

A

|

1]}

|

!

|
|
:
|

|

|

|
|
|
|
|

5
2
|]

|

——
—
r—
—
r——

Diagram of a Skip List

L
Skip List Algorithm

- Based on the lock-based concurrent skip list in The Art of
Multiprocessor Programming by Herlihy and Shavit

- Fine-grained locking for insertion and deletion
- Wait-free lookup

- Locks ensure skip list property is maintained
- Higher level lists are always contained in lower level lists

L
Skip List Algorithm

- Lookup
- Similar to binary search

- Insertion
- Find new node’s predecessors and successors
- Lock predecessors
- Validate that links are correct
- Link new node to predecessors and successors

Il nodes [additional pointers /7 search path

Preliminary Model

- Basic model to analyze scalability by estimating cache
coherence traffic

- Ignored higher levels of linked lists
- Treated lookups as instantaneous operations
- Assumed threads inserted nodes simultaneously

- Measured expected cache line transfers as thread count
and size varied

- Modeled as balls and bins problem

Preliminary Model

- k threads, n element skip list
- Find expected value of S £6)

=1

f () 0, bucket 7 has fewer than 2 balls
7
— 1, bucket 7 has x balls

- Explicit formula for expected cache line transfers t

t(n, k) —k—n—l—z S(k,n —4)(n—z)'(”)i

w = 25

- Verified formula using Monte Carlo simulation

IMPLEMENTATION AND
OPTIMIZATION

Implementation and Optimization: C++

- Custom read-copy update (RCU) garbage collector
- Avoids read-write conflicts

- Padded relevant data structures to a cache line
- Avoids false sharing

Implementation and Optimization: Java

- Simplified contains method implementation
- Avoided keeping track of predecessors and successors

- Avoiding generics/autoboxing
- Pre-allocated arrays internal to operations

- Tried a bunch of hacks to increase the scalability of the
Java implementation
- Nothing improved scalability

PERFORMANCE

Experimental Setup

- 80-core machine
- 8 X 10-core Intel Xeon @ 2.40 GHz
- 256 GB of RAM
- Linux

- C++ with tcmalloc or jemalloc
- Java with HotSpot and OpenJDK VM

Procedure

- Varied thread count and size

- Fixed size skip list with uniformly distributed key space
- Read-only benchmark

- Threads concurrently search for random elements
- Read-write benchmark

- Threads concurrently add and then remove elements
- Size was maintained within a constant factor

- Measured total throughput
- Warmed up the JVM before performing tests

L
Read-only scalability

C++ Read-Only (1e7 elements)
8000 I T T T |

5000

4000

3000

ops/ms

2000

1000

0 ! ! ! | | ! !
0 10 20 30 40 50 60 70 80

threads

= | H i i i i 10

threads
Java scaled similarly

Read-write scalability

Read/\Write (10,000 elements)

QUDD | | | | | | |
C++ glibc ——
8000 - c++ tcmalloc ——
C++ jemalloc ——
7000 - java hotspot ———
java openjdle ———
6000 ~
un L
£ 5000
o
o 4000
3000 =
2000 ~
1000 [
D l I I I I 1 1

30

40
threads

Read-write scalability

- Read-write benchmarks did not scale linearly

- Skip list reached maximal throughput between 10 and 40
cores, depending on the implementation

- Two reasons for drop-off in performance

- Lock contention between threads, especially in small (< 1000
element) skip lists
- As thread count increases, lock contention increases and relative
performance decreases
- As thread count increases, relative memory allocator performance

decreases

Java vs. C++

- C++ iImplementation faster than Java implementation

- Memory deallocation
- Especially difficult in the multithreaded case
- Java has GC, C++ requires manual memory management

- Java’'s compacting GC speeds up memory allocation
- Keeps heap unfragmented
- Increment pointer, return old value
- Minimal synchronization in multithreaded case using TLABsS

- C++’s default glibc memory allocator is bad

D
Java VMs

Java Read/Write (10,000 elements)
5500 I T T T T

I
hotspot
5000 h openjdic N

ops/ms

0 10 20 30 40 50 60 70 80
threacds

C++ Memory Allocators

ops/ms

9000

8000

/000

6000

5000

4000

3000

2000

1000

0

C++ Read/Write (10,000 elements)

[
glibc
tcmalloc
jemalloc

threads

Conclusion

- Implemented and analyzed performance of concurrent
skip lists

- All implementations scale well for read-only

- C++ glibc allocator doesn’t scale, alternatives scale better

L
Future Work

- Better model the performance of the skip list

- Take into account search time, asynchronous reads and writes, and
hierarchy of linked lists

- More general model using queuing theory and Markov models

- Measure performance hit caused by lock contention
- Custom memory allocator

- Redesigned benchmark to avoid synchronization for memory
allocation

D
Thanks

- Thanks to...

- Austin Clements and Stephen Tu for excellent mentorship
throughout the process

- Professor Kaashoek and Professor Zeldovich for the project idea
and mentorship

- MIT PRIMES for providing us this great opportunity for research
- Our parents for all their support

