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Sequential Origins

- Research on data structures produced several fast
sequential designs

- Not designed for concurrent access

- In the 90's, many extended to support concurrent
operations
- Multi-core processors changing

- Exponential growth in # of cores
- New architectures



Parallelism is the future
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Contributions

- Focused on the skip list

- Techniques to improve scalabllity

- Basic analytical model of scalability performance
- Analyses of implementations in Java and C++



MODERN MULTI-CORES




Cache Hierarchy

Socket 1 Socket 2

Registers/Buffers
~1 cycle <1ns

~3 cycles ~1ns

~12 cycles ~3ns

~38 cycles ~12ns

QPI ~40ns

~B65ns

Source: http://mechanical-sympathy.blogspot.co.uk/2013/02/cpu-cache-flushing-fallacy.html



Cache Coherence and Ownership

- Concurrent access and mutation presents a challenge

- Cache coherence protocol

- Cores must take ownership to mutate data
- Concurrent writes cause contention

- Cores must have up-to-date copy to read data
- Requires cache line transfer if data modified

- Cache contention creates bottlenecks



SKIP LISTS
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Skip Lists

- Probabilistic data structure implementing an ordered set
- 3 operations: insert, delete, lookup
- Average case complexity O(log n)
- Stores a sorted list
- Hierarchy of linked lists connect increasingly sparse
subsequences of elements
- Randomized with geometric distribution for O(log n) performance
- Auxiliary lists allow for efficient operation
- No global updates (rebalancing, etc.) due to probabilistic nature

. Can be efﬁciently para”elized Bl nodes [T additional pointers /’search path
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Skip Lists
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Diagram of a Skip List
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Skip List Algorithm

- Based on the lock-based concurrent skip list in The Art of
Multiprocessor Programming by Herlihy and Shavit

- Fine-grained locking for insertion and deletion
- Wait-free lookup

- Locks ensure skip list property is maintained
- Higher level lists are always contained in lower level lists
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Skip List Algorithm

- Lookup
- Similar to binary search

- Insertion
- Find new node’s predecessors and successors
- Lock predecessors
- Validate that links are correct
- Link new node to predecessors and successors

Il nodes [ additional pointers /7 search path




Preliminary Model

- Basic model to analyze scalability by estimating cache
coherence traffic

- Ignored higher levels of linked lists
- Treated lookups as instantaneous operations
- Assumed threads inserted nodes simultaneously

- Measured expected cache line transfers as thread count
and size varied

- Modeled as balls and bins problem



Preliminary Model

- k threads, n element skip list
- Find expected value of S £6)

=1

f ( ) 0, bucket 7 has fewer than 2 balls
7
— 1, bucket 7 has x balls

- Explicit formula for expected cache line transfers t

t(n, k) —k—n—l—z S(k,n —4)( n—z)'(”)i

w = 25

- Verified formula using Monte Carlo simulation




IMPLEMENTATION AND
OPTIMIZATION




Implementation and Optimization: C++

- Custom read-copy update (RCU) garbage collector
- Avoids read-write conflicts

- Padded relevant data structures to a cache line
- Avoids false sharing



Implementation and Optimization: Java

- Simplified contains method implementation
- Avoided keeping track of predecessors and successors

- Avoiding generics/autoboxing
- Pre-allocated arrays internal to operations

- Tried a bunch of hacks to increase the scalability of the
Java implementation
- Nothing improved scalability



PERFORMANCE




Experimental Setup

- 80-core machine
- 8 X 10-core Intel Xeon @ 2.40 GHz
- 256 GB of RAM
- Linux

- C++ with tcmalloc or jemalloc
- Java with HotSpot and OpenJDK VM



Procedure

- Varied thread count and size

- Fixed size skip list with uniformly distributed key space
- Read-only benchmark

- Threads concurrently search for random elements
- Read-write benchmark

- Threads concurrently add and then remove elements
- Size was maintained within a constant factor

- Measured total throughput
- Warmed up the JVM before performing tests
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Read-only scalability
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Read-write scalability

Read/\Write (10,000 elements)
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Read-write scalability

- Read-write benchmarks did not scale linearly

- Skip list reached maximal throughput between 10 and 40
cores, depending on the implementation

- Two reasons for drop-off in performance

- Lock contention between threads, especially in small (< 1000
element) skip lists
- As thread count increases, lock contention increases and relative
performance decreases
- As thread count increases, relative memory allocator performance

decreases



Java vs. C++

- C++ iImplementation faster than Java implementation

- Memory deallocation
- Especially difficult in the multithreaded case
- Java has GC, C++ requires manual memory management

- Java’'s compacting GC speeds up memory allocation
- Keeps heap unfragmented
- Increment pointer, return old value
- Minimal synchronization in multithreaded case using TLABsS

- C++’s default glibc memory allocator is bad
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Java VMs
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C++ Memory Allocators
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Conclusion

- Implemented and analyzed performance of concurrent
skip lists

- All implementations scale well for read-only

- C++ glibc allocator doesn’t scale, alternatives scale better
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Future Work

- Better model the performance of the skip list

- Take into account search time, asynchronous reads and writes, and
hierarchy of linked lists

- More general model using queuing theory and Markov models

- Measure performance hit caused by lock contention
- Custom memory allocator

- Redesigned benchmark to avoid synchronization for memory
allocation
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