
PERFORMANCE ANALYSIS AND 

OPTIMIZATION OF SKIP LISTS FOR 

MODERN MULTI-CORE ARCHITECTURES 

Anish Athalye and Patrick Long 

Mentors: Austin Clements and Stephen Tu 

 

3rd annual MIT PRIMES Conference 



Sequential Origins 

• Research on data structures produced several fast 

sequential designs 

• Not designed for concurrent access 

• In the 90's, many extended to support concurrent 

operations 

• Multi-core processors changing 

• Exponential growth in # of cores 

• New architectures 



Parallelism is the future 

Source: http://www.gotw.ca/publications/concurrency-ddj.htm 



Contributions 

• Focused on the skip list 

• Techniques to improve scalability 

• Basic analytical model of scalability performance 

• Analyses of implementations in Java and C++ 



MODERN MULTI-CORES 



Cache Hierarchy 

Source: http://mechanical-sympathy.blogspot.co.uk/2013/02/cpu-cache-flushing-fallacy.html 



Cache Coherence and Ownership 

• Concurrent access and mutation presents a challenge 

• Cache coherence protocol 

• Cores must take ownership to mutate data 

• Concurrent writes cause contention 

• Cores must have up-to-date copy to read data 

• Requires cache line transfer if data modified 

• Cache contention creates bottlenecks 



SKIP LISTS 



Skip Lists 

• Probabilistic data structure implementing an ordered set 
• 3 operations: insert, delete, lookup 

• Average case complexity O(log n) 

• Stores a sorted list 

• Hierarchy of linked lists connect increasingly sparse 
subsequences of elements 
• Randomized with geometric distribution for O(log n) performance 

• Auxiliary lists allow for efficient operation 

• No global updates (rebalancing, etc.) due to probabilistic nature 

• Can be efficiently parallelized 



Skip Lists 

Diagram of a Skip List 



Skip List Algorithm 

• Based on the lock-based concurrent skip list in The Art of 

Multiprocessor Programming by Herlihy and Shavit 

• Fine-grained locking for insertion and deletion 

• Wait-free lookup 

• Locks ensure skip list property is maintained 

• Higher level lists are always contained in lower level lists 



Skip List Algorithm 

• Lookup 

• Similar to binary search 

• Insertion 

• Find new node’s predecessors and successors 

• Lock predecessors 

• Validate that links are correct 

• Link new node to predecessors and successors 



Preliminary Model 

• Basic model to analyze scalability by estimating cache 

coherence traffic 

• Ignored higher levels of linked lists 

• Treated lookups as instantaneous operations 

• Assumed threads inserted nodes simultaneously 

• Measured expected cache line transfers as thread count 

and size varied 

• Modeled as balls and bins problem 



• k threads, n element skip list 

• Find expected value of 

 

 

 

• Explicit formula for expected cache line transfers t 

 

 

 

 

 

• Verified formula using Monte Carlo simulation 

Preliminary Model 



IMPLEMENTATION AND 

OPTIMIZATION 



Implementation and Optimization: C++ 

• Custom read-copy update (RCU) garbage collector 

• Avoids read-write conflicts 

• Padded relevant data structures to a cache line 

• Avoids false sharing 



Implementation and Optimization: Java 

• Simplified contains method implementation 

• Avoided keeping track of predecessors and successors 

• Avoiding generics/autoboxing 

• Pre-allocated arrays internal to operations 

• Tried a bunch of hacks to increase the scalability of the 

Java implementation 

• Nothing improved scalability 



PERFORMANCE 



Experimental Setup 

• 80-core machine 

• 8 x 10-core Intel Xeon @ 2.40 GHz 

• 256 GB of RAM 

• Linux 

• C++ with tcmalloc or jemalloc 

• Java with HotSpot and OpenJDK VM 



Procedure 

• Varied thread count and size 

• Fixed size skip list with uniformly distributed key space 

• Read-only benchmark 

• Threads concurrently search for random elements 

• Read-write benchmark 

• Threads concurrently add and then remove elements 

• Size was maintained within a constant factor 

• Measured total throughput 

• Warmed up the JVM before performing tests 



Read-only scalability 

Java scaled similarly 



Read-write scalability 



Read-write scalability 

• Read-write benchmarks did not scale linearly 

• Skip list reached maximal throughput between 10 and 40 

cores, depending on the implementation 

• Two reasons for drop-off in performance 

• Lock contention between threads, especially in small (≤ 1000 

element) skip lists 

• As thread count increases, lock contention increases and relative 

performance decreases 

• As thread count increases, relative memory allocator performance 

decreases 



Java vs. C++ 

• C++ implementation faster than Java implementation 

• Memory deallocation 

• Especially difficult in the multithreaded case 

• Java has GC, C++ requires manual memory management 

• Java’s compacting GC speeds up memory allocation 

• Keeps heap unfragmented 

• Increment pointer, return old value 

• Minimal synchronization in multithreaded case using TLABs 

• C++’s default glibc memory allocator is bad 



Java VMs 



C++ Memory Allocators 



Conclusion 

• Implemented and analyzed performance of concurrent 

skip lists 

• All implementations scale well for read-only 

• C++ glibc allocator doesn’t scale, alternatives scale better 



Future Work 

• Better model the performance of the skip list 

• Take into account search time, asynchronous reads and writes, and 

hierarchy of linked lists 

• More general model using queuing theory and Markov models 

• Measure performance hit caused by lock contention 

• Custom memory allocator 

• Redesigned benchmark to avoid synchronization for memory 

allocation 



Thanks 

• Thanks to… 

• Austin Clements and Stephen Tu for excellent mentorship 

throughout the process 

• Professor Kaashoek and Professor Zeldovich for the project idea 

and mentorship 

• MIT PRIMES for providing us this great opportunity for research 

• Our parents for all their support 


