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1 Introduction
In this paper, we explore finite simple groups, in particular sporadic groups. To do
this, we begin with a short review of group theory. Then we briefly go over finite
simple groups. 26 finite groups exhibit exceptional behaviors, called sporadic groups.
There are four classes of sporadic groups. The five Mathieu groups make up the first
class. The seven groups related to the Leech lattice, including the three Conway
groups, make up the second class. The third and highest class contains the Monster
group and seven related groups. Finally, we go over the six pariah groups.

2 Group Theory
Before we define a group, we must define a binary operation.

Definition 2.1. If G is a nonempty set, a binary operation 𝜇 on G is a function
𝜇 ∶ 𝐺 × 𝐺 → 𝐺.

Now we can define a group.

Definition 2.2. A group (G, ∗) is a set G with binary operation ∗∶ 𝐺 × 𝐺 → 𝐺 that
satisfies:

1. (closure) 𝑔 ∗ ℎ ∈ 𝐺. We say that G is closed under ∗.

2. (associativity) for any 𝑔, ℎ, 𝑖 ∈ 𝐺 we have (𝑔 ∗ ℎ) ∗ 𝑖 = 𝑔 ∗ (ℎ ∗ 𝑖).

3. (identity) 𝑒 ∗ 𝑔 = 𝑔 ∗ 𝑒 = 𝑔 for all 𝑔 ∈ 𝐺.

4. (inverse) Every element 𝑔 ∈ 𝐺 has an inverse 𝑔−1 such that 𝑔 ∗ 𝑔−1 = 𝑔−1 ∗
𝑔 = 𝑒.

Definition 2.3. The order of an element 𝑔 ∈ 𝐺, written as 𝑜(𝑔), is the smallest
natural number 𝑛, such that 𝑔𝑛 = 𝑒. If no 𝑛 exists we say the element has an infinite
order.

There are many different types of groups. Here are some basic ones.
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Definition 2.4. A finite group is one with only a finite number of elements.

Definition 2.5. The order of a finite group, written |𝐺|, is the number of elements
in 𝐺.

Definition 2.6. An abelian group is a group that satisfies commutativity, which
states that 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺.

Definition 2.7. A group is called a cyclic group if it is generated by a single element.
For example, a cyclic group G with generator g can be written as

𝐺 = ⟨𝑔⟩ = {..., 𝑔−3, 𝑔−2, 𝑔−1, 0, 𝑔1, 𝑔2, 𝑔3, ...}

Before we define a infinite group, we must define the order of a group.

Definition 2.8. The order of a group G is the number of elements in group G. It is
written as |𝐺|.

Definition 2.9. An infinite group is a group of infinite order.

Definition 2.10. The order of an element 𝑔 ∈ 𝐺, written 𝑜(𝑔), is the smallest natural
number𝑛 such that 𝑔𝑛 = 𝑒 if such a number exists. If no such 𝑛 exists, we say g has
an infinite order.

Now let’s define isomorphisms and homomorphisms.

Definition 2.11. Two groups (𝐺, ∗) and (𝐻, ◦) are said to be isomorphic if there is a
one-to-one correspondence 𝜃 ∶ 𝐻 → 𝐺 such that

𝜃(𝑔1 ∗ 𝑔2) = 𝜃(𝑔1)◦𝜃(𝑔2)

for all 𝑔1, 𝑔2 ∈ 𝐺.
The mapping 𝜃 is called an isomorphism and we say that 𝐺 is isomorphic to𝐻

(written as 𝐺 ≅ 𝐻).

Definition 2.12. If 𝜃 satisfies the previously mentioned property but is not a one-
to-one correspondence, we say 𝜃 is homomorphism.

Definition 2.13. An automorphism of a group 𝐺 is an isomorphism of the group
with itself. We denote by 𝐴𝑢𝑡(𝐺) the set of all automorphisms of 𝐺.

Definition 2.14. A homomorphism

𝑓 ∶ 𝐺 → 𝐺

of a group into itself is called an endomorphism.

Definition 2.15. Given a homomorphism 𝜙 ∶ 𝐺 → 𝐺′, we define its kernel ker 𝜙 to
be the set of 𝑔 ∈ 𝐺 that get mapped to the identity element in a 𝐺′ by 𝜙. Its image
𝜙(𝐺) ⊂ 𝐺′ is its image as a map on the set 𝐺.
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Lagrange’s Theorem is one of the central theorems of Abstract Algebra and its
proof uses several important ideas, including cosets.

First, let’s define a left and right coset.

Definition 2.16. Given a subgroup 𝐻 ≤ 𝐺 and element 𝑔 ∈ 𝐺, the left coset is a
subset of G of the form 𝑔𝐻 ∶= {𝑔ℎ ∶ ℎ ∈ 𝐻}.

Definition 2.17. Similarly, the right coset would be𝐻𝑔 ∶= {ℎ𝑔 ∶ ℎ ∈ 𝐻}.

Now let’s look at three lemmas.

Lemma 2.18. If𝐻 ≤ 𝐺 there is a one-to-one correspondence between H in any coset
of H.

Lemma 2.19. If 𝐻 ≤ 𝐺, then the left coset relation, 𝑔1 ∼ 𝑔2 if 𝑔1𝐻 = 𝑔2𝐻 is an
equivalence relation.

Lemma 2.20. Let 𝑆 be a set and ∼ be an equivalence relation on 𝑆. If 𝐴 and 𝐵 are
two equivalence classes with 𝐴 ∩ 𝐵 ≠ ∅, then 𝐴 = 𝐵.

With these in mind let’s look at Lagrange’s Theorem and prove it.

Theorem 2.21 (Lagrange’s Theorem). If G is a finite group and𝐻 ≤ 𝐺, then |𝐻| will
divide |𝐺|.

Proof. Let ∼ be the left coset equivalence relation we defined in the second lemma.
The last lemma states that any two distinct cosets of ∼ are disjoint. This means we
can say

𝐺 = (𝑔1𝐻) ∪ (𝑔2𝐻) ∪ ... ∪ (𝑔𝑛𝐻)

The first lemma shows that the order of each coset is the same as the order of𝐻,
so

|𝐺| = |𝑔1𝐻| + |𝑔2𝐻| + ... + |𝑔𝑛𝐻| = 𝑛|𝐻|

|𝐺| = 𝑛|𝐻|

showing that |𝐺| is divisible by |𝐻|.

Definition 2.22. A subset𝐻 ⊆ 𝐺 is a subgroup of 𝐺 if

• 𝐻 is not empty.

• If ℎ, 𝑘 ∈ 𝐻 then ℎ𝑘 ∈ 𝐻

• If ℎ ∈ 𝐻 then ℎ−1 ∈ 𝐻.

We write𝐻 ≤ 𝐺 if𝐻 is a subgroup of 𝐺.

Definition 2.23. The centre of a group 𝐺 is the subset

𝑍(𝐺) = 𝑔 ∈ 𝐺|𝑔𝑥 = 𝑥𝑔𝑓𝑜𝑟𝑎𝑙𝑙𝑥 ∈ 𝐺

It is a subgroup.
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Definition 2.24. If also𝐻 ≠ 𝐺, we say that𝐻 is a proper subgroup and write𝐻 < 𝐺.

The most important subgroups in group theory are the normal subgroup.

Definition 2.25. A subgroup 𝑁 ≤ 𝐺 is called normal (written 𝑁 ⊴ 𝐺) if for all
𝑔 ∈ 𝐺, we have the equality of cosets

𝑔𝑁 = 𝑁𝑔

which is often expressed equivalently as

𝑔𝑁𝑔−1 = 𝑁

.

Definition 2.26. A group 𝐺 is said to be simple if it has no normal subgroups other
than 𝐺 and 𝑒.

Definition 2.27. We call the number of distinct cosets of 𝐻 in 𝐺 the index of𝐻 in
𝐺, written |𝐺 ∶ 𝐻|.

Definition 2.28. If 𝑁 ⊴ 𝐺, then we define the quotient group 𝐺∕𝑁 (read 𝐺 mod 𝑁)
to be the set of cosets 𝑔𝑁 of 𝑁 in 𝐺 with the group law

(𝑔𝑁)(ℎ𝑁) = (𝑔ℎ)𝑁

If 𝑁 ≤ 𝐺 is not normal, then 𝐺∕𝑁 still denotes the set of cosets of N in G, but
the above operation is no longer well-defined.

Definition 2.29. Let 𝐺 be a group and let 𝑎, 𝑏 ∈ 𝐺. The product 𝑎𝑏𝑎−1𝑏−1 is called
the commutator of 𝑎 and 𝑏. We write [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1. [𝑎, 𝑏] = 𝑒 if and only if 𝑎
and 𝑏 commute.

Definition 2.30. Let 𝐺′ be the subgroup of 𝐺 which is generated by the set of all
commutators of elements of 𝐺, that is

𝐺′ = 𝑔𝑝({[𝑥, 𝑦]|𝑥, 𝑦 ∈ 𝐺}).

𝐺′ is called the commutator (or derived) subgroup of 𝐺.

With these things in mind, we can look at an interesting theorem and prove it.

Theorem 2.31. Let 𝐺′ be a communicator subgroup of 𝐺. 𝐺∕𝐺′ is an abelian group.
Moreover, if𝑁 ⊲ 𝐺 such that 𝐺∕𝑁 is abelian, then 𝐺′ ⊂ 𝑁.

Proof. In order to prove the first part of the theorem, let 𝑎𝐺′ and 𝑏𝐺′ be any two
elements of 𝐺∕𝐺′. Then

[𝑎𝐺′, 𝑏𝐺′] = 𝑎𝐺′ ⋅ 𝑏𝐺′(𝑎𝐺′)−1(𝑏𝐺′)−1

= 𝑎𝐺′ ⋅ 𝑏𝐺′𝑎−1𝐺′ ⋅ 𝑏−1𝐺′

= 𝑎𝑏𝑎−1𝑏−1𝐺′
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= 𝐺′

because [𝑎, 𝑏] ∈ 𝐺′. In other words, any two elements of 𝐺∕𝐺′ commute. This
means 𝐺∕𝐺′ is abelian. Now let 𝑁 ⊲ 𝐺. If 𝑁 does not contain 𝐺′, then 𝑁 cannot
contain all commutators of elements of 𝐺 Thus let 𝑎, 𝑏 ∈ 𝐺 be such that [𝑎, 𝑏] ∉ 𝑁.
Then [𝑎𝑁, 𝑏𝑁] = 𝑎𝑏𝑎−1𝑏−1𝑁 = [𝑎, 𝑏] ≠ 𝑁. Hence 𝐺∕𝑁 is non-abelian. Then
taking the contrapositive, we can prove the theorem.

3 Finite Simple Groups
There are 18 families of finite simple groups. The first is the cyclic AbelianGroups𝑍𝑝
with order 𝑝 when 𝑝 is a prime number. The next family consists of the Alternating
Groups 𝐴𝑛 when 𝑛 > 4 with order 𝑛!∕2. The other 16 families are Groups of Lie
Type, or finite groups that are closely related to the group of rational points of a
reductive linear algebraic group with values in a finite field. There are also 26 finite
simple groups that four infinite families of finite simple groups. These are called
sporadic groups.

Theorem 3.1 (Classification Theorem of Finite Groups). The finite simple groups
can be classified completely into:

1. Cyclic groups 𝑍𝑝 of prime group order.

2. Alternating Groups 𝐴𝑛 where 𝑛 > 4.

3. Lie-type Chevalley groups.

4. Lie-type.

5. Sporadic groups.

The proof for this theorem is long and extensive and is said to span over 15,000
pages.

4 Sporadic Groups
There are four classes of sporadic groups. The first class is made up of the five
Mathieu groups. The seven groups related to the Leech lattice, including the three
Conway groups, make up the second class. The third and highest class contains
the Monster group and seven related groups. Lastly, there are the Pariah groups.
However, before we go over the classes of sporadic groups, we must define transitive
group actions.
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4.1 Transitive Group Actions
Definition 4.1. The orbit of an element 𝑠 ∈ 𝑆 is 𝑜𝑟𝑏(𝑠) = {𝑔𝑠|𝑔 ∈ 𝐺}.

Definition 4.2. An action of a group on a nonempty set is transitive if there is
exactly one orbit. For any 𝑥1, 𝑦1 ∈ 𝑆𝑡ℎ𝑒𝑟𝑒𝑒𝑥𝑖𝑠𝑡𝑠𝑔 such that 𝑦1 = 𝑔𝑥1. If, for every
two pairs of points 𝑥1, 𝑥2 and 𝑦1, 𝑦2, there is a group element 𝑔 such that 𝑦𝑖 = 𝑔𝑥𝑖,
then the group action is 2-transitive. In general, a group action is k-transitive if every
set {𝑥1, ..., 𝑦𝑘} of 2k distinct elements has a group element 𝑔 such that 𝑦𝑖 = 𝑔𝑥𝑖 .

Definition 4.3. Let 𝛼 ∶ 𝐺∙𝐸 → 𝐸 be a group action of 𝐺 on the set 𝐸. Also, let
𝑥 ∈ 𝐸. Then

𝑆𝑡𝑎𝑏(𝑥) = 𝑔 ∈ 𝐺𝑠.𝑡.𝑔 ⋅ 𝑥 = 𝑥

is the stabilizer of 𝑥.

Definition 4.4. An action is free if for all 𝑠 ∈ 𝑆, 𝑔𝑠 = 𝑠 implies 𝑔 = 𝑒𝐺 . Hence, only
the identity element fixes any 𝑠.

Definition 4.5. An action is sharply transitive if it is transitive and free.

4.2 Mathieu Groups
The discovery of the earliest sporadic groups is attributed to Émile Léonard Mathieu
between 1861-1873. The Mathieu groups were introduced because of interest in
multiply transitive permutation groups other than symmetric groups and alternating
groups.

Group Order Transitivity
𝑀11 24 ⋅ 32 ⋅ 5 ⋅ 11 sharp 4-fold
𝑀12 26 ⋅ 33 ⋅ 5 ⋅ 11 sharp 5-fold
𝑀21 26 ⋅ 32 ⋅ 5 ⋅ 7 2-transitive
𝑀22 27 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 3-transitive
𝑀23 27 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23 4-transitive
𝑀24 210 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23 5-transitive

4.3 The Leech Lattice and Conway Groups
The Leech latticeΛ24was discovered by John Leech in 1967 while trying to optimize
sphere packing in higher dimensions. In 1968, John Conway discovered that the
automorphism group of the Leech lattice is a group of order

|𝐴𝑢𝑡(Λ24)| ≡ |𝐶𝑜0| = 222 ⋅ 39 ⋅ 54 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 23

𝐶𝑜0 itself is not simple but has simple subquotients that form sporadic groups.
Below are the orders of the Conway Groups.
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Group Order
𝐶𝑜𝑛𝑤𝑎𝑦1, 𝐶𝑜1 221 ⋅ 39 ⋅ 54 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 23
𝐶𝑜𝑛𝑤𝑎𝑦2, 𝐶𝑜2 218 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11 ⋅ 23
𝐶𝑜𝑛𝑤𝑎𝑦3, 𝐶𝑜3 210 ⋅ 37 ⋅ 53 ⋅ 7 ⋅ 11 ⋅ 23

Higman-Sims,𝐻𝑆 29 ⋅ 32 ⋅ 53 ⋅ 7 ⋅ 11
McLaughlin,𝑀𝑐𝐿 27 ⋅ 36 ⋅ 53 ⋅ 7 ⋅ 11
Hall-Janko,𝐻 or 𝐽2 27 ⋅ 33 ⋅ 52 ⋅ 7

Suzuki, 𝑆𝑢𝑧 213 ⋅ 37 ⋅ 52 ⋅ 7

4.4 Monster Group
The monster𝑀, was completed in 1982 and is the largest of the sporadic groups.
It is also known as the Fischer-Griess monster because Fischer and Robert Griess
were both instrumental to the construction of it. Fischer was also responsible for
the baby monster 𝐵 and another triplet of sporadic made up of 𝐹𝑖22, 𝐹𝑖23 and 𝐹𝑖24,
which are analogous to the second Mathieu series made up of𝑀22,𝑀23, and𝑀24.
The monster is of the order:

|𝑀| = 246 ⋅ 320 ⋅ 59 ⋅ 76 ⋅ 112 ⋅ 133 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71 ≈ 8.08 × 1053

The baby monster is of the order:

|𝐵| = 241 ⋅ 313 ⋅ 56 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ≈ 4.15 × 1033

Group Order
Monster,𝑀 ≈ 8 ⋅ 1054

Baby Monster, 𝐵 ≈ 4 ⋅ 1033
𝐹𝑖𝑠𝑐ℎ𝑒𝑟24, 𝐹𝑖24 ≈ 1 ⋅ 1024
𝐹𝑖𝑠𝑐ℎ𝑒𝑟23, 𝐹𝑖23 ≈ 4 ⋅ 1018
𝐹𝑖𝑠𝑐ℎ𝑒𝑟22, 𝐹𝑖22 ≈ 6 ⋅ 1013

Harada–Norton,𝐻𝑁 ≈ 2 ⋅ 1014
Thompson, 𝑇ℎ ≈ 9 ⋅ 1017

Held,𝐻𝑒 ≈ 4 ⋅ 109

4.5 Pariahs
There are six Pariah groups that share no significant relationship with the aforemen-
tioned sporadic groups. The Pariah groups are shown below.

Group Order
Rudvalis, 𝑅𝑢 214 ⋅ 33 ⋅ 53 ⋅ 7 ⋅ 13 ⋅ 29
O’Nan, 𝑂𝑁 29 ⋅ 34 ⋅ 5 ⋅ 73 ⋅ 11 ⋅ 19 ⋅ 31
𝐿𝑦𝑜𝑛𝑠24, 𝐿𝑦 28 ⋅ 37 ⋅ 56 ⋅ 7 ⋅ 11 ⋅ 31 ⋅ 37 ⋅ 67
𝐽𝑎𝑛𝑘𝑜4, 𝐽4 221 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 113 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅ 43
𝐽𝑎𝑛𝑘𝑜3, 𝐽3 27 ⋅ 355 ⋅ 17 ⋅ 19
𝐽𝑎𝑛𝑘𝑜1, 𝐽1 23 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 19
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