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1 Introduction
This paper presents a type of non-abelian in�nite simple p-group, the Tarski monster.
The existence of Tarski monsters was �rst proven by Alexander Yu. Olshanskii in
1980 and is signi�cant as Tarski monsters provide counterexamples to Burnside’s
problem. To understand speci�c properties of the Tarski monsters, we begin by
discussing basic group theory terminologies and theorems. In Section 2, we �rst
introduce de�nitions related to groups and subgroups and close with two important
theorems, Cauchy’s Theorem (Theorem 2.5) and Lagrange’s Theorem (Theorem
2.19). These theorems lay the foundation for a basic introduction to the Tarski
monster and its subgroup lattice in Section 3 and selected proofs of its properties,
speci�cally its characterization as a simple group (Theorem 4.7), in Section 4.

2 Groups and Subgroups
In this section, we begin by looking at what a group is and the axioms that a group
must satisfy. We then discuss di�erent kinds of groups and subgroups, as well as
their interesting properties. Finally, this section includes two important theorems,
Cauchy’s Theorem (Theorem 2.5) and Lagrange’s Theorem (Theorem 2.19), and
lemmas such as the Cancellation Law (Lemma 2.2) and the Subgroup Criterion
(Lemma 2.11).

De�nition 2.1. A group is de�ned by the ordered pair (G, ◦) where G is a set and ◦
is a binary operation that maps G × G → G, satisfying the following conditions:

1. Closure: The binary operation ◦ is said to be closed on setG if for any elements
a, b ∈ G, a◦b is also an element of G. Note that closure has been implied in
the de�nition ◦∶ G × G → G, but by convention we include closure as one of
the four criteria of a group.

2. Associativity: The binary operation ◦ is associative such that for any elements
a, b, c ∈ G, (a◦b)◦c = a◦(b◦c).

3. Identity: There exists a unique identity element e ∈ G such that for all a ∈ G,
e◦a = a = a◦e. The identity is often represented by e or 1.
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4. Inverse: For all a ∈ G, there exists a unique inverse a−1 ∈ G such that
a◦a−1 = e = a−1◦a.

We often say that G is a group under ◦ instead of writing the ordered pair, and
we omit ◦ when the binary operation is clear. In most cases, we write ab instead of
a◦b for convenience and assume that multiplication is the group operation, where
am indicatesm applications of ◦ to a. We will also denote the identity by 1 unless
otherwise speci�ed.

Lemma 2.2 (Cancellation Law). For any elements a, b, c in groupG, if ab = ac, then
b = c.

Proof. We multiply a−1 on each side to get (a−1a)b = (a−1a)c, which implies 1b =
1c and so b = c. Note that the law holds similarly for a via right multiplication.

The �rst property we introduce is the order of an element and the order of a
group. Order is particularly useful for looking at how elements behave within a
group and understanding the group structure as a whole. We will also present a
powerful theorem on how the orders of elements and the group relate to each other,
Cauchy’s Theorem.

De�nition 2.3. For a group G, the order of x ∈ G is the smallest positive integerm
such that xm = 1.

De�nition 2.4. The order of a group, denoted by |G|, is the cardinality of the set
G, namely the number of elements in it. G is an in�nite group when its order is
in�nite.

Theorem 2.5 (Cauchy). For a �nite groupG, there must be an element of prime order
p if p divides |G|.

We will not prove Cauchy’s Theorem in this paper, but its proof is outlined in
Exercise 9 of [2, p. 96].

Next, we will characterize di�erent types of groups. For the purposes of this
paper, we will only de�ne abelian groups and cyclic groups formally, after which we
brie�y mention dihedral groups and symmetric groups.

De�nition 2.6. We say that a group G is abelian if ab = ba for all a, b ∈ G.

De�nition 2.7. We say that a group G is generated by its subset S, denoted G = ⟨S⟩,
if every element ofG can bewritten as a �nite product of elements in S. The elements
of S are called generators of G.

By convention, we often write the elements of S instead of the set S in the angle
brackets. For example, if the generating set of G is S = {a, b, c}, we can write
G = ⟨a, b, c⟩. Moreover, we say that G is �nitely generated if the cardinality of S is
�nite.

De�nition 2.8. We say that a group Cn is cyclic if Cn = {xn ∣ n ∈ ℤ} for some
x ∈ Cn. In other words, Cn is a group of order n generated by a single element x.
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Example 2.9. Consider the set of remainders mod 7, in the form of seven equiv-
alence classes, under addition. This is a cyclic group of seven elements, namely
(ℤ7, +) with ℤ7 = {0, 1, 2, 3, 4, 5, 6}. The identity is 0 and each element can be
generated by some addition of 1’s, where 1 has order 7.

A dihedral group is the set of symmetries (rotation and re�ection) of a regular
polygon under the group operation function composition. Speci�cally, D2n is the
group of symmetries of a regular n-gon.

For a given set A, a symmetric group Sn is the set of bijections A → A under the
group operation function composition. There are n elements in A and the order of
Sn is n!.

We next look at subgroups and related de�nitions as these are useful for examin-
ing the structure of a group. The Subgroup Criterion can be conveniently used to
check that a given subset of a group G is a subgroup and its proof is adapted from [2,
Chapter 2.1].

De�nition 2.10. For a group G, we say that a subset H of G is a subgroup, denoted
H ≤ G, ifH is a group under the operation of G. (Speci�cally, check thatH is closed
under the operation and includes the identity and inverses.) We say thatH = {1} is
the trivial subgroup and allH ≠ G are proper subgroups of G.

Lemma 2.11 (The Subgroup Criterion). For nonempty subset H of a group G, we
say thatH ≤ G if and only if for all x, y ∈ H, we have xy−1 ∈ H.

Proof. IfH is a subgroup ofG, by de�nitionH is nonempty and contains the inverses
of its elements. SinceH is closed, xy−1 must be inH since x and y−1 are inH.

Now we prove the converse direction. Suppose we have subsetH satisfying the
condition xy−1 ∈ H for all x, y ∈ H. We will prove that H is group by checking
inclusion of identities and inverses and closure. There exists an element x ∈ H,
which means that xx−1 ∈ H, so H contains the identity 1 = xx−1. By the same
logic, we �nd that for any x ∈ H, its inverse x−1 = 1x−1 is also in H. Finally, for
any x, y ∈ H, we have shown that y−1 ∈ H, so x(y−1)−1 ∈ H. This is equivalent to
xy ∈ H, and henceH is closed under the group operation.

De�nition 2.12. For any subgroup H ≤ G and element g ∈ G, we say that gH =
{gℎ ∣ ℎ ∈ H} is the left coset ofH in G andHg = {ℎg ∣ ℎ ∈ H} the right coset. Note
that the cardinality of the cosets is the same as |H| (this will be shown in the proof
for Theorem 2.19).

De�nition 2.13. For a group G and elements x, g ∈ G, we say that gxg−1 is the
conjugate of x. Similarly, we say that the conjugate of a subgroupH of G is gHg−1 ≔
{gℎg−1 ∣ ℎ ∈ H, g ∈ G}.

De�nition 2.14. For a subgroup N of a group G, we say that N is normal, denoted
by N ⊴ G, if N is invariant under conjugation by elements of G. In other words,
gNg−1 = N.

Note that the conditions gN = Ng for all g ∈ G and N ⊴ G are equivalent by
algebraic manipulation.
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De�nition 2.15. A group G is simple if |G| > 1 and its only normal subgroups are
itself and the trivial subgroup.

De�nition 2.16. For a group G and a normal subgroup N ⊴ G, the quotient group
of N in G is the set of cosets of N in G, written as G∕N.

Notably, lattices are a great method for visualizing the subgroup structures of a
group. We will introduce subgroup lattices here with a few examples and illustrate
their application to Tarski monsters in the next section.

De�nition 2.17. The lattice of subgroups of a group G is a plot of all subgroups as
points positioned such that the subgroupH is higher than K if and only if |H| > |K|
and a path is drawn from subgroupsH to K if and only ifH ≤ K.

Example 2.18. Below are the subgroup lattices of C12, D8, and S3, respectively [2].
Notice that the bottom of a lattice is always the trivial group as it is the subgroup
with the smallest order.

Lastly, we introduce Lagrange’s Theorem with a proof based on [2, Chapter
3.1-3.2] and a related lemma, which will be useful for proving properties of Tarski
monsters in the following sections.

Theorem 2.19 (Lagrange). If G is a �nite group andH is a subgroup of G, the order
ofH divides the order of G. Speci�cally, |G|

|H|
is the number of left cosets ofH in G.

Proof. We �rst show that for a subgroup H of G, all the left cosets of H form a
partition of G. Since the operation is closed on G and its subgroups, G =

⋃
g∈G gH

as each g shows up in gH (g = g ⋅ 1 and 1 ∈ H). Now suppose that we are given
distinct elements a, b ∈ G and aH ∩ bH ≠ ∅. We show that aH = bH. Let
x ∈ aH ∩ bH and write x as x = aℎ1 = bℎ2. Multiplying by the inverse ℎ−11 on the
right, we see that

a = b(ℎ2ℎ−11 ) = bℎ3
for some ℎ3 ∈ H. Thus, for any aℎ ∈ aH, we have that aℎ = b(ℎ3ℎ), so aℎ ∈ bH.
This shows that aH ⊆ bH, and reversing the argument gives bH ⊆ aH. Thus
aH = bH, so distinct left cosets of H must be disjoint and all such cosets gH
partition G.

Let the cardinality of a subgroup H be n and the number of its left cosets be
m. Notice that the map f∶ ℎ ↦ gℎ is surjective by de�nition. Moreover, by the
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Cancellation Law it is injective, as gℎ1 = gℎ2 implies ℎ1 = ℎ2. Therefore, we have a
bijection and |gH| = |H| = n. So |G| = kn and |G|

|H|
is the number of left cosets ofH

in G.

Lemma 2.20. For any group G of order n and any element x ∈ G of order k, the
order of x must divide the order of the group, meaning that k ∣ n.

Proof. Suppose we have a group G and x ∈ G. Let k be the order of x. Consider
the cyclic group ⟨x⟩ = {1, x, x2, … , xk−1}. It is easy to see that ⟨x⟩ is of order k and
is a subgroup of G, since ⟨x⟩ is closed under the group operation and contains the
identity and inverses. Thus, by Lagrange’s Theorem, k divides |G|.

3 The Tarski Monster
In this section, we will de�ne Tarski groups and Tarski monsters, named after Alfred
Tarski. We will also look into the history of Alexander Yu. Olshanskii’s �ndings and
the Burnside problem, in addition to discussing the structure of Tarski monsters via
investigation of their subgroup lattices.

De�nition 3.1 (Tarski group). We say that a group T is a Tarski group if T is in�nite
and all proper subgroups of T have prime power order.

De�nition 3.2 (Tarski monster). Let T be a Tarski group. We say that T is a Tarski
monster if there exists a prime p such that every nontrivial proper subgroup of T
has order p.

In a series of work published in the 1980s, Alexander Yu. Olshanskii proved the
existence of Tarski monsters [4] and classi�ed that Tarski monsters are periodic,
�nitely generated from two non-commuting elements [5]. He further constructed
that the Tarski monster exists for all primes p > 1075.

The discovery of Tarski monsters provides an expansive list of counterexamples
to the Burnside problem, proposed by William Burnside in 1902. The problem
considers whether a group must be �nite if it is �nitely generated and its elements
all have �nite order, conditions which the in�nite group Tarski monster satis�es.
The Tarski monster is an in�nite simple non-abelian p-group. A p-group is de�ned
as a group for which all elements have �nite order of some power of prime p, though
it is commonly understood as the group of prime power order for the �nite case. As
we will prove in Section 4, Tarski monsters are also simple (Theorem 4.7).

A key feature of Tarski monsters is that they have highly symmetric subgroup
lattices. Below we introduce several key properties of lattices [3] and use these to
introduce and characterize the Tarski monster’s subgroup lattices.

De�nition 3.3. For a lattice L and a, b ∈ L, the meet of a and b is written as
a ∧ b = z, where z is the group in L of largest order such that z ≤ a and z ≤ b.

De�nition 3.4. For a lattice L and a, b ∈ L, the join of a and b is written as a∨b = z,
where z is the group in L of smallest order such that a ≤ z and b ≤ z.
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Example 3.5. The ∧ and ∨ operations may be utilized as shown below [3, p. 99].

De�nition 3.6. Let L be a lattice and x, y ∈ L with x ≤ y. We de�ne the interval
from x to y in L as the

[x, y] = y∕x = {z ∈ L ∣ x ≤ z ≤ y}

De�nition 3.7. A sublattice of a lattice L is a subset S ⊆ L that is a lattice under the
same meet and join operations as L. In other words, for all a, b ∈ S, we must have
a ∧ b ∈ S and a ∨ b ∈ S.

Richard Dedekind devised themodular law to introduce modularity as a crucial
property of both abelian groups’ lattices and lattices of only the normal subgroups.
As this property comes from the commutative structures of abelian groups and
normal subgroups, it is rare among subgroup lattices of non-abelian groups.

De�nition 3.8. A lattice L ismodular if it satis�es themodular law: For a, b ∈ L
with a ≤ b, we have

(3.9) a ∨ (x ∧ b) = (a ∨ x) ∧ b

for all x ∈ L.

Example 3.10. The following pentagon lattice, named N5, is the smallest non-
modular lattice.
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Proof. Non-modularity is evident upon consideration of the modular law for x in
relation to a and a ∧ b. On the lefthand side of (3.9), we have

a ∨ (x ∧ (a ∧ b)) = a ∨ (a ∧ b) = a.

On the right hand side, we have

(a ∨ x) ∧ (a ∧ b) = (a ∨ b) ∧ (a ∧ b) = a ∧ b,

which is not a. Therefore,N5 is not modular.

Theorem 3.11 (Dedekind). A lattice L is modular if and only if it does not contain
N5 as a sublattice.

Clearly, a modular lattice must not containN5 sinceN5 breaks the modular
law. The converse can be shown by assuming that L is a non-modular lattice and
checking thatN5 exists as a sublattice. A complete proof of Dedekind’s Theorem
can be found in [3, Chapter 9].

Nowwe consider the generalized subgroup lattice of a TarskimonsterT as shown
below.

The subgroups of T are the trivial subgroup, itself, and numerous cyclic subgroups
of prime order p. The trivial subgroup is represented as 1 above. It is easy to see that
the lattice does not containN5, so T must be modular. In fact, we can conveniently
check the modular law as well.

As previously discussed, having amodular subgroup lattice is uncommon for non-
abelian groups like the Tarski monster. For example, the three subgroup lattices of
C12, D8, and S3 shown in Example 2.18 are all non-modular by Dedekind’s Theorem.
Tarski groups in relation to modular subgroup lattices are being further discussed
in [1] on the basis of the following extended de�nition.

De�nition 3.12. A group G is an extended Tarski group if it has a normal subgroup
N such that

1. G∕N is a Tarski group

2. for all proper subgroupsH ≤ G, we haveH ≤ N or N ≤ H.
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4 Properties of Tarski Monsters
As we will see, Tarski monsters have various interesting properties. We will show in
particular that all proper subgroups of a Tarski monster are cyclic and build up to a
proof for Tarski monsters being simple groups.

Theorem 4.1. All subgroups of Tarski monster T are cyclic.

Proof. Let H be a subgroup of a Tarski monster. It must have cardinality prime
p. By Cauchy’s Theorem, there must be an element x ∈ H that has order p. The
p elements x, x2, … , xp−1, xp = 1 must be all distinct. For if xa = xb for some
1 ≤ a < b ≤ p, we get that 1 = xb−a by the Cancellation Law, which contradicts
that the order of x is p. Since there are exactly p elements in H, x is a generator of
H andH is cyclic.

Theorem 4.1 is equivalent to saying that all groups of a prime order are cyclic.
We have two corollaries from this result.

Corollary 4.2. For a group G of prime order p, every non-identity element of G is a
generator of the group. That is, G = ⟨x⟩ for any x ∈ G where x ≠ 1.

Proof. Suppose we have a group G of prime order p and some x ∈ G where x ≠ 1.
The order of x must not be 1 as it is not the identity. However, the only divisors of
p are 1 and itself, so by Lemma 2.20 we know that the order of x must be p. Now
we consider the set {x, x2, … xp−1, xp = 1}. As we have discussed in the proof for
Theorem 4.1, ⟨x⟩must be G, so any non-identity x can be the generator of G.

Corollary 4.3. Let T be a Tarski monster, then for all proper subgroups H and K
whereH ≠ K, we haveH ∩ K = {1}.

Proof. For a cyclic group of prime order, every non-identity element is a generator
by Corollary 4.2. Thus, if there exists non-identity element x ∈ H ∩ K, then H =
⟨x⟩ = K. Since K ≠ H, we see thatH ∩ K = {1}.

De�nition 4.4. For subgroups H and K of a group G, we de�ne HK ≔ {ℎk ∣ ℎ ∈
H, k ∈ K}.

We now introduce two lemmas, the proofs of which are based on [2, Chapter
3.2]. These lemmas will be used to prove that Tarski monsters are simple groups
(Theorem 4.7).

Lemma 4.5. For subgroupsH and K of a group G, the setHK is a subgroup of G if
and only ifHK = KH.

Proof. IfHK is a subgroup ofG, note that we have subgroupsK ≤ HK andH ≤ HK.
Since the three subgroups of G are all closed, we have KH ⊆ HK. On the other
hand, for any ℎ1 ∈ H and k1 ∈ K, we have ℎ1k1 = (ℎ2k2)−1 as an element of the
subgroupHK. We also have that (ℎ2k2)−1 = k−12 ℎ−12 ∈ KH. Hence, ℎ1k1 ∈ KH so
HK ⊆ KH. Therefore,HK = KH.
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For the converse direction, assume that we are given subgroupsH,K ≤ G such
thatHK = KH. In order to show thatHK is a subgroup, we �rst show that for any
a, b ∈ HK, we have ab−1 ∈ HK. Let a = ℎ1k1 and b = ℎ2k2, so b−1 = k−12 ℎ−12 .
Now we consider ab−1 = ℎ1(k1k−12 ℎ−12 ). We �nd that

k1k−12 ℎ−12 ∈ KH = HK,

so
ab−1 = ℎ1(ℎ3k3) ∈ HK

since ℎ1ℎ3 becomes some ℎ ∈ H. Therefore,HK is a subgroup of G by the Subgroup
Criterion.

Lemma 4.6. For �nite subgroupsH and K of a group, the cardinality ofHK is

|HK| = |H||K|
|H ∩ K|

.

Proof. Any element ofHK is in a left coset ℎK for some ℎ ∈ H, where each distinct
coset is disjoint and has cardinality |K|. Therefore, we can simply count the number
of distinct left cosets ℎK for |HK|.

For any ℎ1, ℎ2 ∈ H, we have ℎ1K = ℎ2K if and only if ℎ−12 ℎ1 ∈ K. Therefore, this
happens when ℎ−12 ℎ1 ∈ H ∩K, which similarly is gives an equivalence ℎ1(H ∩K) =
ℎ2(H ∩ K). Note that H ∩ K is a subgroup of H, so by Lagrange’s Theorem we
know that the number of distinct cosets ℎ(H ∩ K) is |H|

|H∩K|
. We multiply this, which

is the number of distinct cosets ℎK, with the cardinality of K to obtain the above
formula.

Theorem 4.7. A Tarski monster is a simple group.

Proof. Let T be a Tarski monster. Assume, for the sake of contradiction, that T is not
simple. Then, there exists a proper normal subgroup N ⊴ T. LetH be a nontrivial
proper subgroup of T di�erent from N. We �rst show that HN = NH. Let ℎ ∈ H
and n ∈ N. By de�nition, ℎnℎ−1 ∈ N, so

ℎn = (ℎnℎ−1)ℎ ∈ NH.

This means thatHN ⊆ NH. Similarly we can show that nℎ = ℎ(ℎ−1nℎ) ∈ HN, so
NH ⊆ HN. Combining the two results we getHN = NH.

Therefore, HN ≤ T by Lemma 4.5. On the other hand, by Lemma 4.6 we get
that |HN| = |H| ⋅ |N| = p2. Note that Corollary 4.3 gives |H ∩ N| = 1. We reach
a contradiction that a subgroup HN of T has order p2 and not p, so T must be a
simple group.
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