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Abstract

This paper will cover the introductory ideas of counting principles that will lead to the funda-
mentals of probability as sets, exploring operations in set theory such as unions and intersections.
Using these ideas, we will apply them to the Statistical field, summarizing the Binomial and Poisson
distributions respectively. We show a simple binomial model used to predict weather model falls
apart through unrealistic assumptions about our world.

1 Introduction

Let’s say you and a friend play a game with three coins. When the three coins are flipped, the two of
you decide that if all three of the coins land on heads, then your friend wins, and that if two of the
coins land on tails, you win. Who is more likely to win? How many total outcomes are there? How
likely is it that any of you will win at all?

The applications of probability surround our natural world, whether we realize it or not. In this
section, we will pose questions relating to the field of probability, and in section two, essential building
blocks to answer those questions will be explained. In the third section, these ideas will be applied
and extended to more complicated topics such as the Binomial and Poisson distribution respectively,
followed by the Method of Moments to accurately approximate, and altogether culminate to predict a
weather model.

2 Preliminaries

To answer those questions, we’ll have to break it down into the basics. The basic idea of probability is
the field of mathematics that finds out how likely something is to happen, like how often will a six-sided
die land on three, or how likely will you win at the lottery. For a start, here are the basic terms you
need to know, closely following [1].

Definition 1. An experiment or trial is the process of testing probability such as trials of flipping a
coin or rolling a dice.

Definition 2. An outcome is a result of the trial, for example, heads or tails.

Definition 3. An event is a set of outcomes, for example, the event of rolling a dice and ending up
with a 3 or less would include the outcomes of rolling a 1, 2, 3.

Definition 4. A sample space is a collection of all possible outcomes in a trial, for example in a coin
flip, it would be heads or tails.

2.1 Counting Principles

The fundamentals of probability is based on counting principles, like how many ways things can be
arranged and counting all the possibilities.
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Starting off, one important thing to understand is what a factorial is, usually denoted as (x!) and
calculated by x ·(x− 1) · (x− 2)... · 1

In many ways, this is similar to a sumation
∑4
i=1 i, a function which inputs a changing variable

that increases by one into an overall sum. Using the summation above as an example, expanding it will
hold 1 + 2 + 3 + 4, which would be equivalent to 10.

How does this relate to probability? Consider this: you have three fruits–an apple, an orange, and
a pear–and you are tasked with calculating all the possible ways they can be ordered. Since there are
initially three fruits, you have three possibilities of what to put down first. Once that first fruit is taken
out and put down, you have two fruit left to put down. What fruit you have left depends on the first
fruit you put down; for example, if you put down the pear, you have the orange and the apple left. For
each of the three previous possibilities, there are two distinct possibilities for the next fruit, or a total
of 3 · 2 possibilities. When the second fruit is put down, there is only one fruit left to put down–one
possibility for every two of the previous possibilities. This results in 3 · 2 · 1 total possibilities, or 3!
(three factorial) possibilities.

Expanding on this, suppose that the elements are distinct, but the displayed result would not show
the distinctness in the elements of the permutation. Take for example, the arrangement of the nine
letters that make up the word ”happiness”. From the last example, intuitively, one might think it will
just be 9! possibilities, however since there are two ”P”s and two ”S”es in the word, the arrangement
would appear something like this: HAP1P2INES1S2. These similar letters can be shuffled around to
form arrangements that look the same, even though they have different letters in different places, like
this:

HAP2P1INES2S1 is no different then
HAP2P1INES1S2 is no different then
HAP1P2INES2S1 is no different then....

We must remove the arrangements with elements that are alike and repeat. There are two pairs of
alike elements in this set P1 and P2 as well as S1 and S2.The solution to this problem would be

9!
2!2! = 90, 720

The 2!2! represent the different combinations of the nine letters where the only difference is which
of the two P’s and S’s are, and dividing those repeats from the total 9! takes away those repetitive
arrangements from the results.

What if someone needed to find the possible arrangement of a specific subset of items within a set?
Obviously, you can’t just find that with factorials, as that method finds all possible arrangements of
all items in the group. If you have a set of six objects, and you need to find out all the ways a pair of
objects can be selected from them, the solution ends up being 6 · 5, or the six possible objects initially
available for selection, then the remaining five objects not initially selected. This can’t be expressed as
6!, though, as that would include 4 · 3 · 2 · 1 as well. So one might ask, where do the rest of the numbers
go? If you divide 6! by 4!, it comes out to be this:

6·5·4·3·2·1
4·3·2·1

The numbers shared by both numerator and denominator can be canceled out, leaving us with the
desired 6 · 5. By dividing out the items we don’t need, we can find how many possible arrangements
there are for the two items we need. The formula for this is n!/(n− x)!, where n is the total number of
items to choose from, and x is the items picked from n. By subtracting x from n, we find the leftover
numbers that are unneeded to calculate the total number of arrangements, called permutations.

The only problem with this is that different orders of the same objects are counted as different
arrangements. For example, if the items are numbered 1-6, then the pairs (1, 2) and (2, 1) would be
counted as two separate selections, even though they contain the same thing. Enter: choose notation.

Choose notation is read as ”n choose k”, and written as
(
n
k

)
. This notation gives the number of

different combinations of k elements chosen from an n-element set, answering how many different ways
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of a size k group can be made from a set that’s n size. This is combinatorial, so the ordering of the
elements in each group does not matter, and the order of each group does not matter.

Choosing k among the n elements in some order can be expressed as n!(n − k + 1), but to com-

pensate for the subsets being over counted, the n!(n−k+1)
k! will give the true number of ways to create

combinatorial subsets with k from n elements, as dividing by k! removes the repeats from the equation.
Through algebraic manipulation, we get the mathematical formula expressed as(

n
k

)
= n!

k!(n−k)!

This represents ways of choosing a combination subset of k elements from n elements. To illustrate,
there’s a set with four elements, (1, 2, 3, 4). In total there would be six or

(
4
2

)
ways of making

combinations of subsets with two elements, meaning (1, 2), (1, 3), (1, 4), (2, 3), (2,4) and (3, 4). The
ordering of the subsets don’t matter as well as the ordering of the elements in each subset doesn’t
matter, for example, subset (1, 2) is the same as (2, 1).

A binomial is a polynomial which is the sum of the monomial terms, for example, (x + y)1. The
Binomial theorem takes advantage of counting principles and Number theory resembling the patterns
of pascal’s triangle when the powers of a binomial are algebraically expanded to its full form [4]. A few
examples to illustrate are below,

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3,

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4,

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

Every term of an expanded binomial follows the rule of axbyc where the coefficient a is the binomial
coefficient calculated as

(
n
b

)
or
(
n
c

)
, both will yield the same result. Note that for every term in the

expanded binomial, the structure is axbyc with every exponent increase in the compact binomial causing
a to have the pattern of Pascal’s triangle. The following formula will generalize (x + y)n to any non-
negative n.

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
xkyn−k

Using counting principles, the coefficients in a binomial with exponent 3 will be

(x+ y)3 =

(x+ y)(x+ y)(x+ y) =

xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy =

x3 + 3x2y + 3xy2 + y3

When the binomial is multiplied by itself for an n amount of times, there are n2 permutative terms
that will be created. Remember back to the example of HAP1P2INES1S2 and combinations, where
the distinctness of each letter does not matter, multiplication works the same way because it has
the commutative property, thus the terms of permutations can be simplified down into combinations,
obtaining the coefficient a of the expanded term.
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2.2 Set operations

Events in probability can be converted into sets, and used to calculate the probability of certain events
within that set. Set theory is incredibly useful in visualizing probability. There are two main basic set
operations that are used in probability, unions and intersections.

Definition 5. Given two sets A and B, we define the union A ∪ B to be the set of elements in A or
B (or both).

Definition 6. Given two sets A and B we define the intersection A ∩B to be the set of elements in
A and B.

For example, say two dice were rolled. The probability of getting any one combination of two
outcomes, if the order of the dice matters, will always be 1

36 . However, say one wanted to find the
probability of one dice landing a 6, or a dice landing on a 3. The events would have to be calculated
separately and combined together in order for that event to happen. This creates what is called a union,
describing the probability of either a six or a 3 occur.

If two dice were rolled, the probability of a dice landing a 6 and a dice landing a 3 at the same time
would be called an intersection, which is a section within a pair of events that overlaps each other. This
could be thought of as an and statement, when both events happen. Often, the probability gets smaller
because there are more requirements to fulfill, expressed as (x∩y), in which event x is overlapping with
event y or vice versa.

Probability finds the chance of a certain event happening out of a sample space of all possible events.
When more than one event is spotlighted within the sample space, these events can interact in ways
like unionizing and intersecting that can affect the probability of finding those events within a sample
space.

One thing to note is that when discussing probability, there should be a distinction between the sum
of the unions versus the sum of the probabilities. Union notation is referring to sets which can overlap
and complicate things as we describe later on, while the numerical probability is referring to the true
value or ”size” of the set.

The inclusion-exclusion principle is how to calculate the union of non-mutually exclusive events.
Intuitively, one might think adding the values of the events would be the union of those events, however
this will only work for mutually exclusive events because the intersection(s) are overcounted.

The Inclusion-Exclusion principle is critical in calculating the union of non-mutually exclusive sets.
Simply put, this principle over-includes or overcounts, and then takes away at the intersecting areas, ex-
cluding those areas from being considered multiple times. With two sets, the premise can be generalised
into

|A ∪B| = |A|+ |B| − |A ∩B|

For the union of three non-mutually exclusive events, the inclusion-exclusion principle will be

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
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2.3 Separation of events

There will be two ways that events can be categorized, and this affects or does not affect their proba-
bilities in respect to other events in a sample space!

Definition 7. When one event’s probability remains unaffected by the occurrence of the other event,
they are considered independent.

This could be thought of an experiment randomly picking one card from a deck of cards and replacing
that card, then shuffling the deck, and taking a second card. The knowledge of what the first card is
doesn’t change the probability of knowing what the second card is. Replacement is usually the keyword
for independent events in a sample space, but this should not be confused with independent trials!

In order for an event to be independent, the equation must be true

P (A|B) = P (A∩B)
P (B) = P (A)

Independence could be extended to more than two events. All permutations of two of the events
would have to be independent themselves, for a set of a certain size to be independent of each other.
Essentially, independent events are events where knowledge of the probability of one doesn’t change the
probability of the other. If the events are not independent, then they are said to be dependent.

On the other hand,

Definition 8. Events are mutually exclusive if they cannot occur at the same time.

For example, when tossing a coin, Heads and Tails are mutually exclusive since a coin flip cannot
be both a head and a tail. There are two possible outcomes in the sample space, but both cannot occur
at the same time in one flip. To mathematically satisfy mutual exclusivity, the equation below must be
true.

P (A ∩B) = 0

Ultimately, independence and mutual exclusivity are opposite features, if A and B are independent
then knowledge that A happened doesn’t change the probability of B, however, if A and B are mutually
exclusive, if A happened, B would have a probability 0 of occurring because mutual exclusivity can
be thought of as an A OR B scenario. Thus from this, events cannot be independent and mutually
exclusive at the same time.

This fact is circular because A and B being mutually exclusive will also ruin the fact that the events
are independent because if A→ B = 0, if B → A = 0, likewise if the probability of A, if B has occurred,
is still A, then knowing that B occurred with mutually exclusive events will collapse the probability of
A into 0, and ruins the mathematical qualification for events to be considered independent.

To illustrate this in example, suppose that an experiment consists of randomly picking a marble out
of a bag of six, so that once a marble selected, the marble cannot be selected again. This is mutual
exclusivity breaking independence of certain probabilities because now the bag would only have five
marbles left, and the following random selection would have to abide by that new sample space.

Thinking about probability in terms of sets, conditional probability is the idea that a given event(s)
becomes the entire sample space or set, and the Desired outcome is now a subset or intersecting with
the given set. Using our idea from näıve probability of desired outcomes divided by the events in the
sample space, the formula below could be thought of as the same way.

P (E | F ) = P (E∩F )
P (F )

A subset is a set that’s part of a set that’s greater or equal in size. Of course, this would mean a
subset is always an element of the original set. Conditionals could generally be thought of as the subset
becoming the sample space of the conditional probability. In simple terms, conditionals are zooming
into a specified set, and determining the probability of the desired set which lies inside of the specified
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set. This means that if conditional P (E | F ) = 0 then we can conclude that the events are mutually
exclusive since E does not lie in F; E ∩ F = 0, so that they do not intersect anywhere.

Notice that for independent events, P (E ∩ F ) = P (E) · P (F ), however if E and F are dependent of

each other, P (E ∩ F ) = P (E) · P (F |E). Using the general idea of P (E∩F )
P (F ) . One might ask, why are

the approaches to calculating the intersections of independent and dependent events different? Firstly,
we could prove the supposition that the intersection of independent events are just the probabilities
multiplied by rewriting the mathematical requirements for independent conditionals as

P (E | F ) = P (E)·P (F )
P (F )

Notice that the numerator and denominator, P (F ) cancel out, leaving P (E | F ) = P (E) as the
conditional for independent events.

2.4 Two approaches to Probability

Axioms are the most basic assumptions that one must make in Mathematics, and they often build
off of one another to create complex fields such as probability. An axiomatic system such as modern
probability uses a set of three axioms which can be used in conjunction to logically derive theorems.

Axiom 1. 0 ≤ P (E) ≤ 1
Axiom 2. P (S) = 1

Axiom 3. For mutually exclusive events E1, E2, ...

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei)

Understanding the Axioms Axiom 1 states that the probability of any given event must lie
between the values of 0 and. The minimum and maximum could be completely arbitrary, but for
simplicity’s sake as we’ll see with the next axiom, 0 and 1 is easier to quantify and rationally think
about.

Axiom 2 states that the probability of the entire sample space must equal the maximum possible
value, 1, and this would be the maximum for any arbitrary value that axiom 1 has.

Axiom 3 states that the probability of mutually exclusive sets added together is the same as the
probability of the union of each event.

From these axioms we obtain the complement rule, which states

P (Ec) = 1− P (E)

Intuitively, this is logical, saying E complement (everything that’s not E, expressed as Ec) equals
the sample space, 1 minus E. How do we prove this using the axioms?

Since E and Ec are mutually exclusive,

P (E ∪ Ec) = P (E) + P (Ec) From axiom 3
P (E ∪ Ec = P (S) = 1 From axiom 2

P (E) + P (Ec) = 1
P (Ec) = 1− P (E)

Naive probability is the simple idea that all events are equally likely to occur. Counting prin-
ciples are extremely useful when calculating näıve probability because the count of certain permuta-
tions/combinations will be the desired outcomes, and the count of all possible permutations/combinations
will be the entire sample space. Before the axiomatic system of probability, Näıve probability was the
prevalent approach with the probability of an event being calculated as number of times a desired event
happened divided by the total number of trials, or
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Probability(E) =
Desired outcomes
Total outcomes

However, this simple and often intuitive model of likelihood breaks down when comparing non-
equally likely events. This principle could wrongly be applied to absurd ”yes” or ”no” questions, and
yield a fifty-fifty chance for either one to occur. Indeed, we see that when this approach to calculating
probability doesn’t always necessarily yield the same result when the calculation is done again, the
system breaks down and becomes illogical. It’s critical that the reader recognize that in order for näıve
probability to hold true, many assumptions about the events in that sample space have to be made.

For most of probability, mathematicians often assume naive probability or events having equally
likely outcomes, but in real life, not all possibilities have an equally likelihood of occurring. This
intersects with other fields such as Psychology, for example, a certain flavor at an ice cream parlor
might be chosen significantly more than the other options so to make assumptions like all flavors and
colors are equally appealing, no one has allergies/health conditions preventing them from eating any
flavor, or every customer’s favorite flavor is equally split, etc, would be a large assumption to make.

The third axiom of modern probability covers this topic with the probability of the unions of each
event always being equivalent to the summation of the probability of each event. This means that for
mutually exclusive events, the unions of each event equivalently yields the individual probabilities of
each event added together, meaning the corresponding set of a particular event is equal to the numerical
probability of that particular event. Simply, this axiom allows for mutually exclusive non-equally likely
events to be calculated.

2.5 The “Paradox” of Counting

Imagine that three balls were added infinitely to a line, (a) how many balls remain if the third ball was
removed every cycle of addition? (b) How many would remain if the first ball was removed every cycle
of addition?

The answers for each hypothetical are starkly contrasting with outcome (a) resulting in infinitely
many balls while (b) would result in zero balls leftover. The same idea of (a) could be applied to when
the second ball was removed every cycle, because the left side would infinitely accumulate balls on the
left hand side, meanwhile if the first ball was removed every cycle as in (b), subtracting one infinitely
many times from an infinitely large count would result in zero left over.

Georg Cantor developed a concept that’s extremely similar to this; the set of all even numbers is
equivalent to the set of all integers. Intuitively, one might think that the set of even numbers are half
of all integers because the set of even numbers is a subset of all integers. Relating back to our thought
experiment, one ball is a subset of the three ball addition every cycle, but notice that one ball taken
away infinitely many times will equal any non-negative number added infinitely many times. Ultimately,
probability gets weird when using infinity, and the answer might not always be intuitive!
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3 Applications

Probability is the measure of certainty, a look into a ”crystal ball” of sorts for plausible futures. Being
able to truly understand the likelihoods, graphs, and ideas from the previous section is critical in truly
grasping this power through the use of mathematics.

The following section will cover applied probability, and use cases in Statistics, a closely related field
of manipulating uniformly distributed probabilities to yield interesting and useful results.

3.1 Law of Large Numbers

Suppose that you flipped a coin and in the first flip, the result is a head, would you say that a coin flip
will always 100 percent result in a head? No, intuitively, we consider a coin flip using näıve probabiltiy,
saying that heads has probability .5 and tails has probability .5, so as the number of trails approaches
infinity, we should expect that the number of heads and tails are roughly equal with either outcome
having a slight difference than the other. This however, is negligible because the slight difference in
applied outcomes is nothing compared to the total number of trials. Gambling could be thought of as
the same way with each trial being a pull of a slot machine. Initially one might have a large winning
streak, thinking they beat the odds, however, as more and more pulls are done, the probability levels
out to roughly the expected probability.

From day to day life, the law of large numbers is a subtle yet constant reminder of the applications
of probability. This law stipulates that in probability, the more times a trial or experiment is done,
the more accurate the data is to representing the expected probabilities of the events in the sample
space. Anomalies of any data set are dampened out through the expected probabilities balancing the
unrepresentative beginning trials after a large number of trials, hence the law of ”large numbers”.

3.2 Statistical distributions

A fun history The Bernoulli family is famous throughout history for their works in mathematics
and one Jacobs Bernoulli (1655-1705) develops a rivalry with his brother, Johann after collaborating
together on various applications of calculus. As their mathematical genius matured, both of them began
attacking each other in print, and posing difficult challenges to test the others’ skill [6].

In Jacob Bernoulli’s most original work, Ars Conjectandi, he reviews the work of others on proba-
bility, and most notably, the term Bernoulli trial emerges. This trial describes an independent random
experiment with exactly two possible outcomes as its sample space, ”success” and ”failure”. Note that
”success” and ”failure” is all arbitrary, and represents the desired outcome that the mathematician
is analyzing. The probability p represents ”success” and probability pc represents ”failure” because
remember, there are only two outcomes in a Bernoulli trial, so the following equation must be true if
the experiment is a Bernoulli trial. We could conclude the same result using the complement rule.

One thing to keep in mind, independence in events should not be confused as independent trials.
Independent trials could be thought of as doing that specific experiment under the same conditions as
the first trial, meaning the outcomes of previous trials has no effect on future trials and everything is
reset. Independent trials can have mutually exclusive events.

Closely related to the ideas of Bernoulli trials is the Binomial distribution, where the Bernoulli trial
is done n times, each with a probability of success p. Using our proof that E and it’s complement must
add up to the total sample space from our introduction to the three axioms of probability, we can treat
the P (E) of success and P (Ec) of failure the same way, since there will only be two events in the sample
space.

P (E) + P (Ec) = 1

The probability of exactly k successes of any order in the experiment is given by B(n, p) or probability
mass function below [3].
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f(k, n, p) = Pr(k;n, p) = Pr(X = h) =

(
n

k

)
pk(1− p)n−k

Note that the probability of obtaining k successes will never be 1, or certain, unless the probability
for a success is 1.

The Poisson distribution is very similar to the Binomial distribution as it takes in one parameter
lambda or λ, which is n, the number of ”successes” and p, the probability of the ”success” occurring.
The differing characteristic is that a Poisson distribution is discrete and measures the probability of k,
successes occurring with the parameter λ, a constant mean rate within a certain time frame. λ = np
when n is large and p is small. Note that the trials for k successes must be independent of each other.

While the requirements for a Poisson distribution seems strict, there’s a work around! The Poisson
paradigm states that for a distribution to be approximately of Poisson distribution, it’s not required
that all k have the same probability of occurring, but only that all of the probabilities are near negligibly
different, and the trials to be ”weakly dependent”.

The probability mass function for a Poisson distribution is calculated as shown below

f(k;λ) = Pr(X = k) =
λke−λ

k!

Note that for any Poisson distribution this will never guarantee that a large number of k successes
won’t happen, however it will drop off logarithmically, approaching the limit of zero.

3.3 Method of Moments

In theory, if one could sample infinitely many points from a distribution, the parameters of the dis-
tribution could be determined to arbitrary precision. However, in real life, this process is not so
straightforward. There can be errors in the sample data, and for small sample sizes, the estimated pa-
rameters may not be very accurate, depending on the method used to calculate them, such as maximum
a posteriori, or “MAP,” estimation. Note that the first moment of any distribution, whether Binomial
or Poisson, is always the mean or µ of the distribution. [5]

Generally the µ is calculated as follows

µ̂j =
1

n

n∑
i=1

wji

The equation above translates to summing up all of the values and dividing by the number of times
that a value was added. Essentially, µ is another word for mean.

To test the method of moments, the following steps will demonstrate how to use the method of
moments, and how accurate this method is to approximating the parameters of a certain Poisson
distribution with the unknown parameter λ. We sample this Poisson distribution, and find the following
first two moments.

E|X| = 1.372, E|X2| = 3.246

Remember, the first moment is always the µ, with the second moment being put into a moment
function generator yielding,

E|X| = λ
E|X2| = λ2 + λ
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To solve using the method of moments, the values of E|X| and E|X2| are set equal to their moments,
and solved respectively. The values are slightly different, but the estimates are not too far apart from
each other and the true parameter of λ (1.475) in this Poisson distribution. The benefits of this
approximation method is that it’s really quick and can be done by hand, on top of that it’s surprisingly
accurate! This method gets more accurate as there are more variables to ”check” the true value of the
other variables.

4 A simple weather model

Suppose that a weather forecasting algorithm is able to predict tomorrow’s weather using a probability
p, the probability that it will remain the same as the current weather. In this problem, there
will only be two outcomes, the weather is dry or the weather is wet, both are mutually exclusive. The
events in this sample space however, are probability p and pc because the only outcomes are that the
weather stays the same or changes. Given day zero was dry, the question remains how would someone
solve for Pn the total probability that the weather on day n is dry?

In Computer Science the idea of working backwards through an equation is an idea called Recursion.
Since the total probability of dry for any given day rests on the total probability on dry the day before
that, Recursion could be used to solve this problem.

4.1 Overview of the Model

In our problem, the state of the weather is a boolean, where a true or false defines the outcome. In
Boolean Algebra and in this problem, the true/false are mutually exclusive meaning it cannot be both
dry/wet on the same day. Notice that the outcome of the weather tomorrow solely depends on the
current weather. From this, we get the model shown below

Using this model, a matrix can be created, where the column represents the current weather state
and row representing future possible weather states.

dry wet( )
dry p pc

wet pc p
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Using the model above, intuitively, one might solve this problem using the Binomial theorem, calcu-
lating the probability for each branch that ends on day n in dry weather and summing the probability
of other branches that had the same result. This approach gets overwhelmingly complicated for a large
n days because probability p measures that the weather stays the same, not the probability that the
following day is dry. Looking at day three, notice that there are 2n or eight total possible outcomes of
the weather be wet or dry, or permutations of p and pc. From our ideas of combinatorial proof of the
Binomial theorem, realize that the three permutations of dry weather through two pc’s and one p could
be simplified into 3(p · [1− p]2).

Let today be dry, and p = .8, thus pc = .2, and n = 3

(.83 + 3(.8 · .22))

Realize the pattern as n increases is similar to how the exponent of a binomial expands! The above
equation could be generalized to

Given P0 = 1 , n ≥ 1
Pn = (2p− 1)Pn − 1 + (1− p)

Alternatively, we can conclude the same answer below using the Master Theorem because the map
has a self-similar and recursive structure.

For n ≥ 1

Pn = 1
2
+ 1

2
(2p− 1)n

4.2 Real Data Testing

Let’s test the culmination of the ideas in this subsection with actual data! The city of Milwaukee’s
daily weather data from Jan. 1st, 2000 to Jan. 1st, 2005, will be analyzed using code [2]. Assuming the
five year period is a large enough number of trials, thus accurate of the true value for p in Milwaukee.
In our problem, there will only be two possible outcomes, dry or wet, so to keep things simple, if the
value of precipitation in any day is zero, then the weather is dry, however, if the value of precipitation
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in any day is greater then zero, then the weather is wet. Value p in this example will be calculated
when tomorrow’s weather stays the same as today. From the visualization model there will only be
four scenarios, dry → dry or wet → wet, to calculate p, and dry → wet or wet → wet, to calculate pc

respectively.
Ideas applied- Using code to analyze real data, we see that between Jan. 1st, 2000 to Jan. 1st,

2005, there are 1098 days where the weather stayed the same in the following day, and 730 days where
the weather switched! Let’s now put the total desired outcomes over total sample space. p

total sample space

or 1098
1098+730 , equivalently, p = 0.60065. To test out another idea above, stating, p + pc = 1, we could

input p and algebraically solve for pc, but since the total number of times the weather switched is 730, we
could similarly repeat the step above, and solve 730

1098+730 , both equations roughly yielding pc = 0.39934.
In the following test, an experiment will be ran on the same data set comparing the current weather

state to the weather state up to five days ahead. For example, the code will compare the weather state
of Jan. 1st, 2000 → weather state of Jan. 1st, 2000 + five days later. This process will be repeated
until the ”current” is Jan. 1st, 2005.

As described using the model above, the initially unequal probabilities even out to näıve probability,
that is the total probability of dry weather in a large n is fifty percent. This answer to a large n days
might seem unintuitive since the probability of the weather staying the same/changing is known, but
realize that to guess if the weather stays the same 100, 500, 1000, or 10,000 days later from today is
really inaccurate! The algebraic solution using the Master Theorem to this problem also concludes the
same point. Indeed, as n, infinitely increases, the (2p− 1)n portion of the equation will approach closer
and closer to a value of zero, making solution evaluate to Pn = 1

2 + 0.
When comparing the current weather to n days ahead, we find that as n increases, Pn remains

roughly the same. Realize that this will affect the algebraic solution and conclusion to this weather
model.

n=1 P1 = 0.600656455142232
n=1 P2 = 0.5897155361050328
n=2 P3 = 0.6061269146608315
n=3 P4 = 0.5946389496717724
n=4 P5 = 0.612144420131291

When we input Pn into the equation and solve for p in the right hand side of Pn = 1
2 + 1

2 (2p− 1)n

we find that the value of p exponentially increases as n increases. Pn stays roughly the same on the left
hand side of the equation, with the differences in Pn’s being nearly negligible, while on the right hand
side of the equation, the exponent of n increases, causing the value of p to increase exponentially.

4.3 Takeaways

There are a multitude of ways to tackle this problem, but from introductory probability and under some
assumptions, we’ve just demonstrated that for a large number of days after, the weather being dry or
wet will be roughly fifty-fifty, regardless of the probability less than 1 that the weather stays the same.
Contrastingly, from our real data testing of Milwaukee, we discover that real life weather does not fall
in such a way that this model works. After just comparing the ”current” day to two days later, the
algebraic model breaks apart, in particular we see that the value of p exponentially increases than the
true value. Ultimately in our algebraic model, even as the probability of the weather staying the same
approaches infinity, the accumulating, and increasing assumptions that have to be made will level out
the probability to be fifty-fifty. In our complex world, this theoretical situation and its solution does
not become so blankly true because the perfect assumptions of this problem wouldn’t fit the data to
the model. The core idea about probability is that the less assumptions have to be made, the more
certain one is about how true their odds are.
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