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Abstract

In this paper, we study a graph-theoretic inequality on a general Potts model partition
function Z(G,ΩV ), allowing weights on the vertices and colors. We first discuss a purely
algebraic inequality, which we prove for integral and sufficiently large real exponents. From
this algebraic inequality, we deduce several local graph-theoretic inequalities. For the case
β = 0, which counts the number of weighted proper colorings, we use these local inequalities
to prove, by induction, an upper bound on Z(G,ΩV ) in terms of bipartite graphs.

Summary

We explore a mathematical inequality arising from a physical model of interacting par-
ticles represented by a graph. It is still an open problem as to which graph maximizes the
value of a certain quantity. This conjecture can be extended to a more general inequality,
removing constraints on our objects of interest. In this paper, we study the general inequality
under certain assumptions, namely that one parameter β is zero. We translate an algebraic
result into inequalities on graphs, proving the general conjecture in these cases.



1 Introduction

The Potts model is a model in statistical mechanics describing interacting particles and

their spins. Mathematically, we depict this as a graph on the particles, coloring the vertices

to represent the spins. While this model has important physical consequences, it also raises

interesting questions in extremal graph theory.

We explore a graph-theoretic inequality arising from the Potts model. Let G = (V,E) be

a graph. Fix β ∈ [0, 1] and a positive integer q. We define the Potts model partition function

to be

Z(G, β) =
∑

φ∈[q]|V |

βm(φ),

where m(φ) denotes the number of monochromatic edges of the q-coloring φ. Galvin and

Tetali [1] made the following conjecture:

Conjecture 1.1. Over all d-regular graphs G, the quantity

Z(G, β)1/|V (G)|

is maximized when G = Kd,d.

Their conjecture can be extended, dropping the condition that G is regular.

Conjecture 1.2. For any graph G with no isolated vertices, the inequality

Z(G, β) ≤
∏
uv∈E

Z (Kdu,dv , β)
1

dudv (1)

holds (here dv = deg v).

We consider a generalized version of Conjecture 1.2 where additional weights are permit-

ted on the vertices and colors. Let G = (V,E) be a graph with no isolated vertices. For each

v ∈ V , consider a measure space Ωv = ([q], µv), where µv is a function from [q] to R≥0. Also,

let ΩV to be the product measure space
(
[q]|V |, µV

)
.

Definition 1.1. Define the function

Z(G,ΩV ) =

∫
ΩV

βm(φ) dφ

1



where m(φ) is the number of monochromatic edges of a coloring φ ∈ [q]|V |.

Definition 1.2. Given two measure spaces A and B on [q], define the expression

(A,B; s, t) = Z(Ks,t, A
s ×Bt).

In this paper, we explore the following conjecture, which generalizes Conjecture 1.2 to

arbitrary measure spaces.

Conjecture 1.3. Let G be a graph with no isolated vertices. Define a measure space Ωv for

each v ∈ V . Then

Z(G,ΩV ) ≤
∏
uv∈E

(Ωu,Ωv; dv, du)
1

dudv .

We prove certain special cases of this conjecture assuming a purely algebraic inequality.

Conjecture 1.4. Let q and c be positive integers, and p1, . . . , pq be nonnegative real numbers

with sum 1. For any nonnegative real numbers x1, . . . , xq and real number t ≥ 1, the inequality

∑
1≤i1,...,ic≤q

 ∑
1≤j≤q

j 6=i1,...,ic

pj


t

c∏
k=1

xik ≥

 q∑
i=1

∑
1≤j≤q

j 6=i

pj


t

xi


c

(2)

holds.

In Section 2, we prove Conjecture 1.4 when t is an integer or t ≥ q − 1. This inequality

is related to 1.3 by the following theorem.

Theorem 1.5. If Conjecture 1.4 is true, then Conjecture 1.3 is true for β = 0.

The classical inequality (1) has been proven for several special cases. Galvin and Tetali

[1] proved inequality (1) for bipartite G, Davies et al. [2] proved inequality (1) for 3-regular

graphs and Davies [3] extended the proof to 4-regular graphs using computer-assisted tech-

niques, thus answering Conjecture 1.1 for the cases d = 3, 4. More recently, Sah et al. [4]

proved inequality (1) for triangle-free G. We build off of their ideas, considering the quantity

Z(G,ΩV ) instead of Z(G, β).
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The paper is structured as follows. In Section 2, we discuss proofs of Conjecture 1.4

under certain assumptions. In Section 3, we use these algebraic inequalities to prove local

inequalities on graphs. These local inequalities are then used to prove Theorem 1.5 in Section

4.

2 Algebraic Inequalities

We offer a proof of Conjecture 1.4 for two special cases. First, we restrict t to be an

integer.

Theorem 2.1. Conjecture 1.4 holds when t is a positive integer.

Proof. Suppose we expand  ∑
1≤j≤q

j 6=i1,...,ic

pj


t

with the multinomial theorem. Consider the coefficient of the term pe1`1 · · · p
en
`n

in the expansion

of the left-hand side, where the exponents e1, . . . en are positive integers with sum t. This

coefficient is (
t

e1, . . . , en

) ∑
1≤i1,...,ic≤q

ia 6=`b

(
c∏

k=1

xik

)
=

(
t

e1, . . . , en

) ∑
1≤i≤q

i 6=`1,...,`n

xi


c

.

It follows that the left-hand side of (2) can be written as∑(
t

e1, . . . , en

) ∑
1≤i≤q

i 6=`1,...,`n

xi


c

pe1`1 · · · p
en
`n

where the sum is over all monomials pe1`1 · · · p
en
`n

of degree t. We use a similar argument for

the right-hand side of (2) and rewrite the desired inequality as∑(
t

e1, . . . , en

) ∑
1≤i≤q

i 6=`1,...,`n

xi


c

pe1`1 · · · p
en
`n
≥

∑(
t

e1, . . . , en

) ∑
1≤i≤q

i 6=`1,...,`n

xi

 pe1`1 · · · p
en
`n


c

.

This follows by weighted Jensen’s inequality and the convexity of x 7→ xc, since the sum of
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the weights is ∑(
t

e1, . . . , en

)
pe1`1 · · · p

en
`n

=

(
n∑
i=1

pi

)t

= 1.

Our strategy of expanding the sums raised to the power of t can be extended to sufficiently

large real numbers t. We generalize the multinomial expansion with noninteger powers as

follows. For each n ∈ N, define the symmetric function fn : Rn → R by

fn(x1, . . . , xn) =
∑
S⊆[n]

(∑
i∈S

xi

)t

(−1)n−|S|,

where the empty sum is zero. It can be checked that

(x1 + · · ·+ xn)t =
∑

{s1,...,sk}⊆[n]

fk(s1, . . . , sk). (3)

This is our analogue of the multinomial expansion.

Lemma 2.2. If t ≥ n− 1, then fn(x1, . . . , xn) ≥ 0 for any x1, . . . , xn ≥ 0.

Proof. We may rewrite

fn(x1, . . . , xn) =

∫ x1

0

· · ·
∫ xn

0

t(t− 1) · · · (t− n+ 1)(y1 + · · ·+ yn)t−ndy1 · · · dyn,

as the nth derivative of xt is t(t − 1) · · · (t − n + 1)xt−n. Since t ≥ n − 1, the integrand is

always nonnegative, and the conclusion follows.

Because the terms of our modified multinomial expansion are nonnegative, we may use

the same strategy as the proof of Theorem 2.1.

Theorem 2.3. Conjecture 1.4 holds for all t ≥ q − 1.

Proof. Let us expand  ∑
1≤j≤q

j 6=i1,...,ic

pj


t

using equation (3). After expanding the left-hand side of (2), the coefficient of fk(p`1 , . . . , p`k)
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is ∑
1≤i1,...,ic≤q

ia 6=`b

(
c∏

k=1

xik

)
=

 ∑
1≤i≤q

i 6=`1,...,`n

xi


c

.

Performing a similar expansion on the right-hand side of (2), we are left to show∑
{`1....,`n}⊆[q]

 ∑
1≤i≤q

i 6=`1,...,`n

xi


c

f (p`1 , . . . , p`n) ≥

 ∑
{`1....,`n}⊆[q]

 ∑
1≤i≤q

i 6=`1,...,`n

xi

 f (p`1 , . . . , p`n)


c

.

This follows by weighted Jensen’s inequality and the convexity of x 7→ xc: by Lemma 2.2,

the weights are nonnegative, and their sum is∑
{`1,...,`n}⊆[q]

fn(`1, . . . , `n) = (x1 + · · ·+ xq)
t = 1.

3 Local Inequalities

We discuss several local inequalities needed for the proof of Theorem 1.5. These lemmas

are analagous to the results of [4, Section 4].

Definition 3.1. Let A = ([q], µ) be a measure space and x ⊆ [q]. Then we define

A	 x = ([q], µ′)

where

µ′(x) =


µ(x) x /∈ x

βµ(x) x ∈ x

.

Lemma 3.1. Let A,B be measure spaces on [q]. For nonnegative integers k and r ≤ s ≤ t,

(A,B; k, s) ≤ (A,B; k, r)
t−s
t−r (A,B; k, t)

s−r
t−r .

Proof. In general, we have the equality

(A,B; k, i) =

∫
Ak

|B 	 x|idx

for any nonnegative integer i. Applying this for i = r, s, t, the result follows by Hölder’s

inequality.
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Lemma 3.2. Let B,C be measure spaces on [q] and b, c be positive integers. Fix y ∈ [q]. If

β = 0, then

|C 	 y|b−1 (B 	 y, C; c− 1, b− 1) ≥ |C|b−1(B 	 y, C 	 y; c− 1, b− 1).

Proof. Rewrite the inequality as

1

|C|b−1

∫
Cb−1

|B 	 y 	 x|c−1dx ≥ 1

|C 	 y|b−1

∫
(C	y)b−1

|B 	 y 	 x|c−1dx.

Treating x ∈ Cb−1 as a random variable, the inequality can be expressed as

E
[
|B 	 y 	 x|c−1

]
≥ E

[
|B 	 y 	 x|c−1

∣∣y /∈ x
]
.

With this interpretation, the inequality is clearly true.

Conjecture 3.3. Let A,B,C be measure spaces on [q] and a ≥ b, c be positive integers.

Then∫
Ac

c∏
i=1

(B 	 xi, C 	 xi; c− 1, b− 1)
a

b+c−2 dx ≤
∫
Ac

|C	x|
a(b−1)
b+c−2

c∏
i=1

(B	xi, C; c, b−1)
a(c−1)

c(b+c−2) dx.

(4)

Lemma 3.4. Conjecture 1.4 implies Conjecture 3.3 for β = 0.

Proof. If c = 1 then equality always holds, so suppose that c ≥ 2. After bounding the

right-hand side below with Lemma 3.1, we are left to prove that∫
Ac

|C|
a(b−1)
b+c−2

c∏
i=1

(B 	 xi, C 	 xi; c− 1, b− 1)
a

b+c−2 dx

≤
∫
Ac

|C 	 x|
a(b−1)
b+c−2

c∏
i=1

(B 	 xi, C; c− 1, b− 1)
a

b+c−2 dx.

We apply Lemma 3.2 to the left-hand side, reducing the inequality to∫
Ac

|C|
a(b−1)
b+c−2

c∏
i=1

|C 	 xi|
a(b−1)
b+c−2

|C|
a(b−1)
b+c−2

(B 	 xi, C; c− 1, b− 1)
a

b+c−2 dx

≤
∫
Ac

|C 	 x|
a(b−1)
b+c−2

c∏
i=1

(B 	 xi, C; c− 1, b− 1)
a

b+c−2 dx.

Suppose that A = (a1, . . . , aq) and C = (c1, . . . , cq) are the associated measures. We set

t = a(b−1)
b+c−2

and

pi =
ci
|C|

, yi = ai(B 	 xi, C; c− 1, b− 1)
a

b+c−2
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for each 1 ≤ i ≤ q. Then it is enough to prove that(
q∑
i=1

(1− pi)t yi

)c

≤
∑

1≤i1,...,ic≤q

 ∑
1≤j≤q

j 6=i1,...,ic

pj


t

c∏
k=1

yik .

This follows from Conjecture 1.4.

Lemma 3.5. Let A,B,C be measure spaces on [q] and a ≥ b, c be positive integers. If

inequality (4) holds, then∫
A

(B	x,C	x; c−1, b−1)
a

b+c−2 dx ≤ (A,B; b, a)
c−1

b(b+c−2) (A,C; c, a)
b−1

c(b+c−2) (B,C; c, b)
a(b−1)(c−1)
bc(b+c−2) .

Proof. When b = 1 we have an equality, so assume that b ≥ 2. We apply [4, Lemma 3.3],

which implies that∫
A

(B 	 x,C; c, b− 1)
a
c dx ≤ (A,B; b, a)

1
b (B,C; c, b)

a(b−1)
bc .

We are left to show∫
A

(B	x,C	x; c−1, b−1)
a

b+c−2 dx ≤ (A,C; c, a)
b−1

c(b+c−2)

(∫
A

(B 	 x,C; c, b− 1)
a
c dx

) c−1
b+c−2

.

After raising both sides to the power of c, we may rewrite the inequality as∫
Ac

c∏
i=1

(B 	 xi, C 	 xi; c− 1, b− 1)
a

b+c−2 dx

≤
(∫

Ac

|C 	 x|a dx

) b−1
b+c−2

(∫
Ac

c∏
i=1

(B 	 xi, C; c, b− 1)
a
c dx

) c−1
b+c−2

where the xi are the entries of the c-vector x ∈ Ac. Applying Hölder’s inequality to the

right-hand side, it suffices to show∫
Ac

c∏
i=1

(B 	 xi, C 	 xi; c− 1, b− 1)
a

b+c−2 dx

≤
∫
Ac

|C 	 x|
a(b−1)
b+c−2

c∏
i=1

(B 	 xi, C; c, b− 1)
a(c−1)

c(b+c−2) dx.

This follows from Lemma 3.4.

4 Main Induction

In this section, we prove Theorem 1.5 by induction on |V | in the same manner as the

proof of [4, Theorem 4.1]. The base case |V | = 0 is trivial, so we only consider the inductive
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step.

Let ∆ be the largest degree of a vertex in V , and fix a vertex w of degree ∆. Let Vk be

the set of all vertices at a distance of exactly k from w, and Eij be the set of edges with one

endpoint in Vi and the other endpoint in Vj. In particular, uv ∈ Eij means that u ∈ Vi and

v ∈ Vj. We use E≥2 to denote the set ⋃
min(i,j)≥2

Eij.

Finally, let I1 ⊆ V1 be the set of neighbors of w with degree 1.

For each edge uv ∈ E, define a function fuv : Ωu × Ωv → {0, 1} by

fuv(xu, xv) =


β xu = xv

1 otherwise

.

Also, for each xw ∈ [q] and v ∈ V \ w, define a new measure space Ωxw
v = ([q], µxwv ) as

µxwv (x) =


βµv(x) v ∈ V1 and x = xw

µv(x) otherwise

. (5)

Let G′ = (V ′, E ′) be the subgraph of G induced by the vertex set V \ w ∪ I1. Then

Z(G,ΩV ) =

∫
ΩV

βm(φ)dφ

=

∫
Ωw

∫
Ωxw

V \w

βm(φ′)dφ′dxw

=

∫
Ωw

(∫
Ωxw

V ′

βm(φ′)dφ′

)∏
v∈I1

(∫
Ωv

fwv(xw, xv) dxv

)
dxw

≤
∫

Ωw

∏
u′v′∈E′

(Ωxw
u′ ,Ω

xw
v′ ; dv′ , du′)

1/(du′dv′ )
∏
v∈I1

(∫
Ωv

fwv(xw, xv) dxv

)
dxw,

where the final inequality follows from the inductive hypothesis on G′. It then suffices to

show that∫
Ωw

∏
u′v′∈E′

(Ωxw
u′ ,Ω

xw
v′ ; dv′ , du′)

1/(du′dv′ )
∏
v∈I1

(∫
Ωv

fwv(xw, xv)dxv

)
dxw ≤

∏
uv∈E

(Ωu,Ωv; dv, du)
1/(dudv).

Upon dividing by ∏
uv∈E≥2

(Ωu,Ωv; dv, du)
1/(dudv) ,
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which appears as a factor on both sides, it is enough to prove∫
Ωw

∏
uv∈E12

(Ωxw
u ,Ωxw

v ; dv, du − 1)1/((du−1)dv)
∏

uv∈E11

(Ωxw
u ,Ωxw

v ; dv − 1, du − 1)1/((du−1)(dv−1))
∏
v∈I1

|Ωxw
v | dxw

≤
∏

uv∈E01∪E11∪E12

(Ωu,Ωv; dv, du)
(1/dudv) .

We distribute the factors from E01 on the right-hand side to the factors from E11 and E12,

obtaining∫
Ωw

∏
uv∈E12

(Ωxw
u ,Ωxw

v ; dv, du − 1)
1

(du−1)dv

∏
uv∈E11

(Ωxw
u ,Ωxw

v ; dv − 1, du − 1)
1

(du−1)(dv−1)

∏
v∈I1

|Ωxw
v | dxw

≤
∏
v∈I1

(Ωw,Ωv, 1,∆)
1
∆

∏
uv∈E11

(Ωw,Ωu, du,∆)
1

du(du−1)∆ (Ωw,Ωv, dv,∆)
1

dv(dv−1)∆ (Ωu,Ωv, dv, du)
1

dudv

·
∏

uv∈E12

(Ωw,Ωu,u,∆)1/(du(du−1)∆)(Ωu,Ωv; dv, du)
1/(dudv).

We now use Hölder’s inequality with the weights∑
uv∈E12

1

(du − 1)∆
+
∑

uv∈E11

(
1

(du − 1)∆
+

1

(dv − 1)∆

)
+
∑
v∈V1

1

∆
= 1

to bound the left-hand side above by∏
v∈I1

(∫
Ωw

|Ωxw
v |

∆ dxw

) 1
∆ ∏
uv∈E11

(∫
Ωw

(Ωxw
u ,Ωxw

v , dv − 1, du − 1)
∆

du+dv−2 dxw

) du+dv−2
(du−1)(dv−1)∆

·
∏

uv∈E12

(∫
Ωw

(Ωxw
u ,Ωv, dv, du − 1)∆/dvdxw

) 1
(du−1)∆

.

The first of these factors satisfies∫
Ωw

|Ωxw
v |

∆ dxw = (Ωw,Ωv; 1,∆).

Applying Lemma 3.5 with a = ∆, b = du, and c = dv, we obtain the following bound on the

second factor.∏
uv∈E11

(∫
Ωw

(Ωxw
u ,Ωxw

v , dv − 1, du − 1)
∆

du+dv−2 dxw

) du+dv−2
(du−1)(dv−1)∆

≤
∏

uv∈E11

(Ωw,Ωu, du,∆)
1

du(du−1)∆ (Ωw,Ωv, dv,∆)
1

dv(dv−1)∆ (Ωu,Ωv, dv, du)
1

dudv .
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Finally, [4, Lemma 3.3] provides a bound on the third factor.∏
uv∈E12

(∫
Ωw

(Ωxw
u ,Ωv, dv, du − 1)∆/dvdxw

) 1
(du−1)∆

≤
∏

uv∈E12

(Ωw,Ωu; du,∆)
1

du(du−1)∆ (Ωu,Ωv; dv, du)
1

dudv .

Multiplying these three final inequalities, we obtain the desired result.

5 Conclusion

In this paper, we explore a generalized inequality for the Potts model partition function.

Conditioned on the purely algebraic Conjecture 1.4, we develop local inequalities that hold

for any graph. We use these local inequalities to prove Theorem 2.1 by induction, providing

bounds on the general Potts model partition function for β = 0 as well as the classical

partition function for small positive β.

While we have proved Theorem 2.1 and Theorem 2.3, it remains to prove Conjecture 1.4

for real (or alternatively rational) t ∈ [1, q − 1], which is necessary for the main induction.

It would be interesting to prove Conjecture 1.4 for specific values of t ≥ 1, which may

perhaps allow the induction to work on graphs with small maximum degree. Additionally,

we conjecture that Lemma 3.4 holds for arbitrary β ∈ [0, 1], which would extend Theorem

1.5 to β in this interval. Our proof of Lemma 3.4 does not generalize; it fails for β close to

1. Another approach to this local inequality is needed to extend our results to more values

of β.

However, our proofs of the local inequalities may be extended for small β > 0. To do this,

it is necessary to analyze the equality cases of these inequalities for β = 0 and show that

they can be extended to small β > 0, perhaps by a power series expansion around β = 0.

Such a result could be used to prove Conjecture 1.2 for small β.
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