
Boundaries on the Number of Points in Acute Sets

Tanya Otsetarova

under the direction of
Zhulin Li

Department of Mathematics
Massachusetts Institute of Technology

Research Science Institute
August 2, 2017



Abstract

A famous Erdős problems asks for the maximum cardinality of the sets of points deter-
mining only angles less than or equal to π

2
. We examine similar problem but for sets in Rd

determining only angles less than given angle θ. Our results hold for values of θ in different
intervals. First, we prove that any set of points determining only angles less than or equal
to π

3
has maximal cardinality d+ 1 and it is attained if and only if the polytope defined by

all points in the set is a simplex. We also find a lower bound for the maximal cardinality of
sets with angles < θ, when θ ∈ (19π

45
, π
2
). Lastly, we prove that every set determining angles

less than or equal to θ is finite for θ < π.

Summary

It is relatively easy to find that there are at most three points in the plane, determining
only acute angles. Many decades ago, the famous mathematician Paul Erdős conjectured
that if there is a sufficiently large number of points in high-dimensional space then they
determine at least one obtuse angle. The problem to give approximate solution by finding
boundaries was posed as a prize problem by the Dutch Mathematical Society, but solutions
were only received for low dimensions. The problem is not trivial even when we work in 3D.

Our results concern the maximum size of a set with only angles less than a certain angle
θ. We prove that a set, determining only angles less than or equal to 60◦, contains at most
d+1 points and is equal to d+1 if and only if the points construct a simplex (a generalization
of a triangle in high dimensions). We also find a lower bound for sets with angles less than
θ, when θ is a large enough acute angle and prove that the points are not infinitely many
when θ is a large angle but not a line.



1 Introduction

The field of combinatorial geometry offers a variety of problems related to the structure

of sets. In 1957, Erdős [1] conjectured that in every set of more than 2d points in the d-

dimensional Euclidean space at least one of the angles determined by three of the points is

obtuse. We know that 2d is a tight upper bound as the vertex set of the d-dimensional unit

cube {0, 1}d ⊆ R satisfies the non-obtuse set property and has cardinality 2d.

In 1962, Danzer and Grűnbraum [2] gave a proof of the conjecture and posed the following

question: what is the maximal number of points S in Rd such that all angles determined by

these points are acute? Sets with such property are called acute sets and their maximal

cardinality is denoted by f(d).

During the years, the problem has attracted the attention of many iconic mathematicians,

which has lead to great progress on the bound improvement.

The 2D case has a simple solution, which asserts that the maximal cardinality is equal to

3. The complexity of the problem grows exponentially with the number of dimensions and

is not trivial even for d = 3. The 3D case was solved by Croft [3] which gave us the result

that f(3) = 5.

Figure 1: Construction for f(3) = 5

Danzer and Grűnbraum also proposed f(d) ≥ 2d − 1 as a linear lower bound for the

maximal cardinality but in 1983 Erdős and Fűredi [4] improved this result to an exponential

bound in higher dimensions. By a non-constructive proof and via probabilistic methods, they
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showed that

f(d) ≥ 1

2

(
2√
3

)d
≈ 0.5 · 1.155d.

They also claimed (without a proof) that more random process than choosing points

from the vertex set of the hypercube yields f(d) ≥ 1.189d. In 2006 the lower bound was

improved by Bevan [5] to

f(d) ≥ 2

⌊
1

3

(
2√
3

)d+1
⌋
≈ 0.77 · 1.155d.

In 2009 a progress on the problem was made by Ackerman and Ben-Zwi [6] when they

improved the lower bound to

f(d) = Ω

((
2√
3

)d√
d

)
.

In 2011, the lower bound was further improved by Harangi [7]:

f(d) = Ω

( 10

√
144

23

)d
 ≈ Ω(1.201d).

In April 2017, Zakharov [8] presented a new method to attack the problem which includes

construction of a new set in Rd+2 from one in Rd implying that f(d + 2) ≥ 2f(d). The new

set is of size 2d/2+1 which significantly increases the lower bound for f(d) to approximately

1.414d.

In July 2017, Cohen [9] refined Zakharov’s approach and obtained a new lower bound

which is of order approximately 1.43d. He also conjectured that ( e
√
e−ε)d < f(d) < ( e

√
e+ε)d

are tight bounds on the cardinality. Only few days later, Zakharov [10] significantly improved

the bound again to 1.618d, thus disproving Cohen’s conjecture.

Our research examines sets of points determining angles less than θ for θ ∈ (0◦, π).
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We consider different intervals for the angles and determine when the bounds for their

maximal cardinality jumps from linear to exponential. In Section 2 we prove that the maximal

Figure 2: Changes in the values for fθ(d)

cardinality f≤π
3
(d) of a set containing only angles smaller than or equal to π

3
is at most d+ 1

with equality if and only if the points are vertices of a d−dimensional simplex. In Section

3 we give a lower bound for sets with angles less than θ, when θ ∈ (19π
45
, π
2
). Our bound is

exponential, and is equal to

2

⌊ √
2

3
√

3

((
1

4 cos θ

)cos θ (
3

4(1− cos θ)

)1−cos θ
)d ⌋

.

In section 4, we prove that the sets in which all angles are ≤ θ, when θ ∈ (π
2
, π), have finite

number of points.

2 Upper bound for sets of points determining angles

≤ π
3

In this section we use an induction to derive an upper bound for sets of points which

determine only angles less than or equal to π
3
.

Theorem 1. For every d ≥ 2, if a set of points S ⊆ Rd determines only angles ≤ π
3
, then its

cardinality is at most d+ 1 and it is exactly d+ 1 if and only if the points define a simplex.

Proof. The proof is based on induction on the number of dimensions. The base case is d = 2.
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Suppose there is a set of 4 points in the plane which form only angles less than or equal to

π
3
. Since they necessarily form a quadrilateral, there is at least one internal angle larger than

π
3

- contradiction. Thus, the cardinality f≤π
3
(2) is at most 3. The only sets of 3 points which

determine only angles of this size is an equilateral triangle (2-dimensional simplex).

Figure 3: Simplices in R2

Assuming that the induction hypothesis f≤π
3
(n) ≤ n + 1 is true, we need to prove that

f≤π
3
(n+ 1) ≤ n+ 2 is also true.

Let us suppose that there exists a set with more than n+2 points in Rn+1 which contains

only angles less than or equal to π
3
. Therefore, there exist n+3 points v1, v2, ..., vn+3 in Rn+1,

such that all determined angles are less than or equal to π
3
. By induction hypothesis we may

fix a basis , so that the vectors v1, v2, ..., vn+3 lie in a hyperplane, defined by x1 + x2 + · · ·+

xn+2 = 1, in which their coordinates are given by

v1 = (1, 0, 0, ..., 0)

v2 = (0, 1, 0, ..., 0)

...

vn+1 = (0, 0, 0, ..., 1, 0).

We denote the coordinates of vn+2 by (y1, y2, ..., yn+2). Because every angle is less than

or equal to π
3
, every 3 points in the set S must form an equilateral triangle. Our induction

hypothesis and construction lets us calculate the length |−−→v1v2|, which is equal to
√

2; hence

|−−→vivj| =
√

2 for any i 6= j, with i, j ∈ {1, 2, ..., n+ 3}.
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(a) Simplex in R3 (b) Simplex in R4 (c) Simplex in R5

Figure 4: We mark vn+2 in red and the new-formed sides in blue. The length of the sides is√
2.

To find the angle between (vn+2 − v1) and (vn+3 − v1), we solve the following system of

equations, which determines the coordinates of vn+2 and vn+3.

|−−−−→v1vn+2| =
√

(y1 − 1)2 + (y2 − 0)2 + (y3 − 0)2 + · · ·+ (yn+1 − 0)2 + (yn+2 − 0)2 =
√

2

|−−−−→v2vn+2| =
√

(y1 − 0)2 + (y2 − 1)2 + (y3 − 0)2 + · · ·+ (yn+1 − 0)2 + (yn+2 − 0)2 =
√

2

|−−−−→v3vn+2| =
√

(y1 − 0)2 + (y2 − 0)2 + (y3 − 1)2 + · · ·+ (yn+1 − 0)2 + (yn+2 − 0)2 =
√

2

...

|−−−−−→vn+1vn+2| =
√

(y1 − 0)2 + (y2 − 0)2 + (y3 − 0)2 + · · ·+ (yn+1 − 1)2 + (yn+2 − 0)2 =
√

2.

Hence we have equality for the first y + 1 coordinates

y1 = y2 = y3 = · · · = yn+1.

Then we substitute yi with y1 for i ∈ {2, 3, · · · , n + 1} and obtain (n + 1)2y21 + y2n+2 = 2.

Using the definition of a hyperplane, we also have that (n+ 1)a+ b = 1 which implies that

the only possible coordinates of the points vn+2 and vn+3 are

vn+2 = (0, 0, 0, ..., 0, 1)
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vn+3 =

(
2

n+ 2
,

2

n+ 2
,

2

n+ 2
, ...,

2

n+ 2
,−1

)
.

Using the values for the coordinates, we calculate the dot product, which is −1. It follows

that the angle determined by the three points with apex v1 is bigger than π
3

and in fact is

equal to π, which contradicts our assumption. The above argument shows that there are at

most n+ 2 vectors that determine angles less than or equal to π
3
.

The last part is to prove that the maximum of n + 2 points is achieved only for points

defining a simplex.

Without loss of generality, we assume that the points v1, v2, ..., vn+2 lie in the hyperplane

of Rn+2, defined by x1 + x2 + · · ·+ xn+2 = 1. By induction hypothesis, we also assume that

v1 = (1, 0, 0, ..., 0, 0)

v2 = (0, 1, 0, ..., 0, 0)

...

vn+1 = (0, 0, 0, ..., 1, 0).

The next step in proving the hypothesis is to find the coordinates of the point vn+2 and

determine whether the polytope formed is a simplex.

Using the same techniques as in the first part of the proof, we obtain the possible coordinates

of vn+2

vn+2 = (0, 0, 0, ..., 0, 1)

vn+2 =

(
2

n+ 2
,

2

n+ 2
,

2

n+ 2
, ...,

2

n+ 2
,−1

)
.

The dot product of the two possible vectors is −1, which means that they are symmetrical

with respect to the hyperplane in which we can put the rest n+ 1 points. Both points form

a (n+ 1)-dimensional simplex.
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Figure 5: Example of two symmetrical points in R3

3 Lower bound for sets of points determining angles θ,

when θ ∈ (19π
45 ,

π
2)

In this section we examine sets of points which determine only angles less than or equal

to θ for θ ∈ (19π
45
, π
2
). In the general case when θ = π

2
, the main approach used to attack the

problem is the probabilistic method. Using the same tool, we consider the vertices of the

hypercube, defined as the set A ⊆ {0, 1}d. We choose a set number of vectors and calculate

the expectation for the angles larger than or equal to θ. Given that expectation, we can

simply subtract the large angles and obtain the final number of points which determine only

angles less than θ.

Theorem 2. For every d ≥ 2 and θ ∈ (19π
45
, π
2
), there is a set A ⊆ {0, 1}d of cardinality

2

⌊ √
2

3
√

3

((
1

4 cos θ

)− cos θ (
3

4(1− cos θ)

)cos θ−1
)d ⌋

in Rd that determines only angles less than θ.
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Proof. Set m :=

⌊
√
2

3
√
3

((
1

4 cos θ

)− cos θ
(

3
4(1−cos θ)

)cos θ−1)d ⌋
and take 3m vectors

a(1), a(2), ..., a(3m) ∈ {0, 1}d.

We choose their coordinates randomly and independently. Because we use the vertex set

of the hypercube, the angles determined by these vectors are either right, or acute. To find an

upper bound for the maximal cardinality of the set, we find the expected number of angles

larger than θ.

Let us pick the vectors a(i), a(j) and a(k) and denote a(j) − a(i) by v, and a(k) − a(i)

by w. If v = (v1, v2, ...vd) and w = (w1, w2, ..., wd), their dot product v ·w is then expressed

as

v · w = v1w1 + v2w2 + · · · vdwd = cos θ|v||w|,

where |v| is the length of |v|, |w| is the length of w and θ = ∠(v, w). The maximal length of

|v| or |w| is
√

11
2 + 12

2 + · · ·+ 1d
2. We substitute this value and express the dot product as

v1w1 + v2w2 + · · ·+ vdwd ≤ d cos θ,

d∏
m=1

(a(j)m − a(i)m)(a(k)m − a(i)m) ≤ d cos θ.

The number of triples of vectors a(i), a(j) and a(k) we check for acuteness is equal to

3
(
3m
3

)
as there are

(
3m
3

)
combinations of vectors and three ways to choose an apex. We

now proceed to find the expected number of angles larger than θ. To do this we use the

Chernoff-Hoeffding theorem, which states

Theorem 3 (Chernoff-Hoeffding theorem). Suppose X1, ..., Xn are independent and identi-
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cally distributed random variables, taking values in {0, 1}. Let p = E[Xi] and ε > 0. Then

Pr

(
1

d

d∑
l=1

Xl ≤ (p− ε)

)
≤

((
p

p− ε

)p−ε(
1− p

1− p+ ε

)1−p+ε
)d

.

Let Xl = (a(j)l − a(i)l)(a(k)l − a(i)l) and ε = 1
4
− cos θ. We know that Xl equals 1 when

a(j)l = a(k)l = 1 and a(i)l = 0

or

a(j)l = a(k)l = 0 and a(i)l = 1.

These are two of total eight cases, which means the probability of Xl = 1 is p = 1
4
. We apply

the Chernoff-Hoeffding theorem with this probability and obtain

Pr

(
1

d

d∑
l=1

Xl ≤ cos θ

)
≤

((
1

4 cos θ

)cos θ (
3

4− 4 cos θ

)1−cos θ
)d

.

We conclude that the expected number of angles which are larger than θ is at most

3

(
3m

3

)((
1

4 cos θ

)cos θ (
3

4− 4 cos θ

)1−cos θ
)d

.

This means that there is a choice of the 3m vectors in which the angles larger than θ are

at most 3
(
3m
3

) ((
1

4 cos θ

)cos θ ( 3
4−4 cos θ

)1−cos θ)d
< 3 (3m)3

6

((
1

4 cos θ

)cos θ ( 3
4−4 cos θ

)1−cos θ)d
< m. If

there are no more than m combinations of three vectors which lead to angles larger than θ,

then we can simply remove m of the vectors. The remaining vectors do not determine angles

larger than θ.
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4 Upper bound for sets of points determining angles

≤ θ, when θ < π

In this section we prove that if a set of points determines only angles smaller than a defined

angle θ, then this set has finite number of points.

Theorem 4. For every d ≥ 2 and every θ < π, if a set of points S ⊆ Rd determines only

angles less than π, then S is finite.

Proof. To prove this statement we need to consider two cases for the set S - when S is

bounded and when it is unbounded.

Case 1. The set of points S ⊆ Rd is unbounded.

We pick the point A ∈ S and define a sphere with radius r and center A. Then we divide

the sphere to finitely many identical pieces. The set of points in a piece K is denoted by Pk.

The pieces are formed such that if we consider the points i and j, where i, j ∈ P , the angle

with apex A, determined by i, j and A, is smaller than 180−θ
2

. We denote a region by R and

define it as R := {t(p− A), p ∈ P, t > 0}. Let M = R ∩ S. Because S is an unbounded set,

we can choose a particular piece Pk such that M is unbounded. Then we consider the points

B ∈M and C ∈M such that the distance between A and B is at least m and the distance

between B and C is larger than m. We are interested in 4ABC and its angles. Because

BC > AB we know that ∠ACB < ∠CAB < 180−θ
2

. This directly implies that ∠ABC > θ,

which contradicts our assumption that there are no angles larger than θ.
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Figure 6: Construction in unbounded S ⊆ Rd

Case 2. The set of points S ⊆ Rd is bounded.

We suppose that S is an infinite bounded subset of Rd.

Let us take the sequence x, x1, x2, ..., xm, converging to x, where xi ∈ S, i ∈ {1, 2, ...,m}.

The limit point x is not necessarily in S. As in Case 1 we can construct a sphere with center

x and divide Rd into pieces, denoted by P . Again, the pieces are formed such that if we

consider the points y and z, where y, z ∈ P , the angle with apex A, determined by y, z and

A, is smaller than 180−θ
2

. A region is defined as R := {t(p − x), p ∈ P, t > 0}. Because S

is infinite set, there must be a region N in which there are infinitely many points from the

sequence. Denote the subsequence of x1, x2, ..., xm with xj(1), xj(2), ..., xj(n) and xj(i) ∈ N .

Let xj(1) = C and take point B to be a point in the subsequence xj(i), satisfying the

following property for the length of the vectors |C −B| > |B − x|.

Theorem 5 (Bolzano-Weierstrass theorem). Every bounded sequence in Rd has a convergent

subsequence.

Applying Bolzano - Weierstrass theorem, we may assume that the subsequence

xj(1), xj(2), xj(3), . . . , xj(n)

is converging. Then we take a point A in the subsequence such that the angle determined

by A,B and C with apex A is smaller than 180−θ
2

. This directly implies that the angle ABC
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is larger than θ.

Figure 7: Construction in bounded S ⊆ Rd

5 Conclusion

We determined that a set determining only angles less than π
3

is a set of at most d + 1

points. This bound d+1 is attained if and only if the points form a simplex. Via probabilistic

methods we give a lower bound on the cardinality of sets with angles only less than θ, when

θ ∈ (19π
45
, π
2
). We also prove that the sets in which all angles, determined by the points, are

≤ θ, when θ ∈ (π
2
, π), have finite number of points.

In the future, we plan continue our examination on the rest of the intervals of angles, for

which there are not known bounds. To be more specific, we intend to find an exponential

lower bound for the number of points determining only angles θ, when θ ∈ (π
3
, 19π

45
) and we

aim to give an exponential upper bound for sets with angles θ, when θ ∈ (π
2
, π).
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