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Abstract

Consider Ω, an open subset of R2 with a convex and smooth boundary. The set of
eigenvalues λ for the Dirichlet problem on Ω with clamped boundary is known as the spectrum
of Ω. We investigate the question posed by M. Kac, which asks whether the shape of a drum
Ω is spectrally invariant, or determined by the spectrum. Specifically, we ask the question
when Ω is an ellipse. Marvizi and Melrose found a family of spectral invariants Ik that
were able to prove the spectral invariance of the disk and are believed to determine the
spectral invariance of ellipses. They also showed that these invariants can be calculated from
the coefficients in the asymptotic expansion of lim

n→∞
Ln, where Ln is the length of a closed

geodesic of length n, or a path governed by the billiard ball map β. We compute β explicitly
on the ellipse and provide a precise description of calculating the asymptotic expansion of
Ln.

Summary

In 1966, Mark Kac popularized the question, “Can One Hear the Shape of a Drum?”
The question asks whether one can determine the shape of a drum if given sound that
it produces. The answer to Kac’s question, in general, is no; however, for drums that are
planar and convex, the answer is still unknown. We investigate Kac’s question for planar and
convex drums, specifically looking to determine if the shape of the ellipse can be determined
by the sound it produces. We do so by studying the length of billiard ball paths that traverse
the boundary of our ellipse. Our main result is a precise method to calculate such lengths,
bringing us a step closer to determining whether one can hear the shape of an ellipse.



1 Introduction

Consider a resonating drum. It is known that the drum will vibrate only with a discrete set

of frequencies, known as the spectrum of the drum. The specific values of these frequencies

are determined by the drum’s shape, material, and tension.

A mathematical analogue exists for the drum scenario. Consider a drum Ω. There exists

constants λ such that one can find a wave function that is a solution to the wave equation

(1) that corresponds to Ω. An illustration of a wave function is given in Figure 1. The set

of all such λ, known as eigenvalues of the wave equation, are analogous to the spectrum of

frequencies at which the physical drum will vibrate. It is known that the set of eigenvalues

of the wave equation is uniquely determined by the shape of Ω.

Figure 1: A solution to the wave equation on a planar drum [9].

A natural question to ask is the reverse: is the shape of Ω uniquely determined by its

eigenvalues? Or equivalently, as coined by Mark Kac [1] in 1966, can one hear the shape of a

drum? The study of this question has long intrigued mathematicians and helped further the

field of spectral theory, which has played a key role in describing quantum mechanics and

formulating Hilbert spaces.

The answer to Kac’s question turns out to be negative for general domains of Ω as well as

some restricted domains (such as drums with planar dimension). Explicit examples have been
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found of nonisometric yet isospectral drums. For example, after Kac’s paper was published,

John Milnor [4] found an explicit example of two 16-dimensional tori whose geometries were

different but whose spectra were identical. Despite this counterexample, some geometric data

about Ω can be recovered from the spectrum. For example, Weyl’s law [3] gives the volume

and area of Ω in terms of the limit distribution of its eigenvalues. Such geometric data that

can be determined by the spectrum are known as spectral invariants. Kac’s question asks if

the shape of a drum is a spectral invariant.

We study Kac’s question when Ω is restricted to the convex, planar domain with smooth

boundary, in which the answer is still unknown. What is known is that the spectrum of Ω

can be described using the asymptotics of the lengths of close geodesics, which are the paths

of billiard balls as they bounce off the boundary of Ω and eventually return to their starting

position. An illustration of a closed geodesic is given in Figure 2. The lengths of geodesics

serve as a more tractable description of the spectrum, and thus serves as our focus of study.

Figure 2: A closed geodesic on an ellipse.

Marvizi and Melrose [2] computed a family of integral invariants Ik that were used to prove

the spectral invariance of the disk in the convex, planar domain. These integral invariants

were proved to be not only spectrally invariant but calculatable from the coefficients in

the asymptotic expansion of the lengths of closed geodesics. In particular, they found that
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maximizers of I1 were disks, thus implying the disk’s spectral invariance.

Our overall goal is to determine the spectral invariance of the ellipse, which is a natural

generalization of the disk, by calculating the integral invariants derived by Marvizi and

Melrose. It is not yet known whether the ellipse is spectrally invariant, or whether it can

be classified by the integral invariants in the same way as the disk. Our main result is the

explicit calculation of the asymptotic expansion of the lengths of closed geodesics on the

ellipse, which has yet to be done and serves as the first step in calculating the integral

invariants for the ellipse. We state our result in the following theorem:

Theorem 1. Suppose Γ is an ellipse with unit length semimajor axis and eccentricity e.

Then the asymptotic expansion of the length Ln of a closed geodesic on Γ with n reflection

points can be written as L(Γ) +
∞∑
i=1

ckn
−2k as n→∞, where L(Γ) denotes the perimeter of

Γ and the coefficients ck are derived from the power series expansions of elliptic functions.

In Section 2, we provide mathematical background to the problem. In Section 3, we com-

pute the billiard ball map through a coordinate change. In Section 4, we use the coordinate

change from Section 3 to prove our main theorem. In Section 5, we discuss future research.

2 Mathematical Background

Consider Ω, an open subset of R2 with a convex and smooth boundary ∂Ω. A constant λ is

an eigenvalue of the Dirichlet problem if there exists u ∈ C∞(Ω) such that

∆u = λ2u in Ω,

u|∂Ω = 0,

(1)

where ∆ is the Laplace operator given by ∆ = ∂2

∂x21
+ ∂2

∂x22
. Here, u is the vertical displacement

of the wave at a specific position on Ω.
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Pieces of information that are determined by the eigenvalues of the Dirichlet problem are

known as spectral invariants. Marvizi and Melrose [2] computed a family of spectral invariants

Ik in terms of the integral of functions of the curvature of ∂Ω. These integral invariants are

useful for determining the spectral invariance of drums; for example, maximizers of I1 were

found to be disks, proving the disk’s spectral invariance. Our goal is to calculate the integral

invariants of ellipses to determine their spectral invariance.

The direct computation of the integral invariants, however, proves to be difficult. Yet,

Marvizi and Melrose found an indirect method to compute the invariants by studying the

lengths of closed geodesics, which we discuss now.

Consider a billiard ball on Ω that is reflected off the boundary according to the Law

of Reflection and is traveling in the counterclockwise direction. The path of the ball is a

geodesic. If the ball travels m times around the boundary and returns to its starting position

after n reflections, then the path it traversed is a closed geodesic. We denote the family of

such closed geodesics Γ(m,n), in which m denotes the winding number and n denotes the

reflection number. A result due to Poincaré states that Γ(m,n) is non-empty on any strictly

convex compact C∞ region [8]. We also define the length of a closed geodesic to be the total

distance that the ball travels before returning to its original position.

Let {g1,n} be any sequence of closed geodesics such that for each n, we have g1,n ∈ Γ(1, n).

Marvizi and Melrose found that the values of the integral invariants are algebraically related

to the values ck, which are coefficients in the asymptotic sum

L(g1,n) ∼ L(∂Ω) +
∞∑
k=1

ckn
−2k as n→∞,

where L denotes length. Thus, by computing lim
n→∞

L(g1,n) for the ellipse, we can then compute

the integral invariants from the coefficients ck.

We now define the billiard ball map β that maps the position and velocity of the billiard
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(s, σ)

φ
β(s, σ)

Figure 3: A closed geodesic on an ellipse described using the billiard ball map β.

ball from each point on ∂Ω to the next along the path of a closed geodesic. With β, we

are able to describe the movement along closed geodesics symbolically. In the definition of

β in [2], the coordinates of β are parametrized as (s, σ), where s ∈ [0, L] is the arc length

parameter of ∂Ω and σ denotes the cosine of the angle φ measured inward from the forward

tangent to the velocity vector. We define β(s, σ) to be the next position and velocity pair in

our closed geodesic. An illustration of a closed geodesic described by β is given in Figure 3.

It is known that β preserves the area 2-form dσ ∧ ds, a proof of which is given by

Tabachnikov [7]. Using this fact, Marvizi and Melrose proved the existence of a function ζ

that can be used to locally describe the vector flow of β in the following theorem.

Theorem 2 (Marvizi and Melrose). If β is the billiard ball map of a strictly convex C∞

planar domain, there exists a function ζ ∈ C∞(T ∗(∂Ω)) defined on the positive half of the

cosphere bundle B∗(∂Ω) such that

β ◦ exp
(

+ζ
1
2Hζ

)
= Id
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locally, where Hζ denotes the Hamiltonian vector field of ζ on T ∗(∂Ω).

Using the power series of ζ, Marvizi and Melrose determined the algebraic relationship

between the coefficients ck in the asymptotic expansion of the length of closed geodesics

and the integral invariants Ik. However, ζ is difficult to compute; as a result, we directly

calculate β in this paper instead.

In section 3, we compute β on the ellipse; however, unlike [2], we use the radial coordinate

θ instead of the arc length coordinate s to determine position on the ellipse. More precisely,

we compute β : (θ, σ) 7→ (θ′, σ′), where θ ∈ [0, 2π] parametrizes the points on the ellipse with

semimajor axis length a and semiminor axis length b as (a cos θ, b sin θ).

3 Change of Coordinates

Consider the special case when β acts on the disk parametrized by (r cos θ, r sin θ). It is

evident that β translates the radial coordinate θ by a constant under each iteration due to

the symmetrical geometry of the disk. However, the same parallel translation in the radial

coordinate θ does not hold true for β when it acts on the ellipse.

Thus, to compute β for the ellipse, we introduce a new coordinate u(θ) such that β :

(u, σ) 7→ (u + c, σ′) translates u by a constant c, similar to behavior of β on the radial

coordinate of the disk. To begin, we consider the geometry of closed geodesics on the ellipse.

The following theorem, a proof of which is given in Tabachnikov [7], allows us to characterize

our closed geodesics in terms of confocal caustics, or curves to which the billiard ball forever

remains tangent.

Theorem 3. A geodesic inside an ellipse forever remains tangent to a fixed confocal conic.

If a segment of the geodesic intersects the segment determined by the two foci of the ellipse,

then the ball’s path will forever remain tangent to a confocal hyperbola. Otherwise, the ball’s

path will remain tangent to a confocal ellipse.
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Γ

γ

Figure 4: Two closed geodesics on Γ (blue and red) with confocal caustic γ.

It is also known that the reflection number of a closed geodesic that is tangent to a fixed

confocal caustic remains invariant under a change of the starting position; a proof is given

in [7]. As a result, we can parametrize the closed geodesics in Γ(1, n) by the eccentricity of

the confocal caustic and assume an arbitrary starting position for our closed geodesic. We

also note that the confocal caustic must be an ellipse to have a closed geodesic with winding

number 1.

An equivalent statement of Theorem 3 is that the billiard ball map on the ellipse is

integrable, or that there exists a function F (θ, σ) that remains invariant under the billiard

ball map. This fact is futher expounded upon in [7]. We have that the integratibility of β

implies the existence of our coordinate u that is parallely translated by a constant under β.

We consider β acting on Ω = Γ, where Γ is an ellipse with eccentricity e with semimajor

axis of unit length and centered at the origin. Let γ be confocal to Γ with eccentricity

e < t < 1 such that the billiard ball path is always tangent to γ. We parametrize points on

Γ with θ as (cos θ,
√

1− e2 sin θ). Then we have the following proposition.

Proposition 1. Suppose β acts on the ellipse Γ such that the billiard trajectory remains
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tangent to the ellipse γ that is confocal with Γ. The coordinate u such that β maps (u, σ) to

(u+ ct, σ
′) for a constant ct dependent on t is given by

u(θ, t) =
F
(
θ, ti√

1−t2

)
F (2π, ti√

1−t2 )
, (2)

where F (φ, k) =

∫ φ

0

dτ√
1− k2 sin2 τ

.

Proof. We use methods similar to those in [7]. We seek a coordinate u such that du remains

invariant under β. To do so, we find a function f such that f(θ)dθ remains invariant under

β, and then integrate to recover u.

Let A1 : (x, y) 7→ (x, y√
1−e2 ) be the affine transformation that takes Γ to the unit disk,

and choose a point θ on the disk. Tangency is preserved under affine transformations, so

we denote α = A1β(θ) to be the second intersection of the tangent from θ to A1γ with the

disk. Denote by RA1γ(θ) and LA1γ(θ) the lengths of the positive (right) and negative (left)

tangent segments from θ to A1γ. Consider θ′ infinitesimally close to θ. Let ω be the angle

determined by θα and θ′α′, as illustrated in Figure 5. By the Law of Sines, we have

|θθ′|
RA1γ(θ)

=
sinω

sin∠αθθ′
=

sinω

sin∠θ′α′α
=
|αα′|

LA1γ(α)
,

which implies that

dθ

RA1γ(θ)
=

dα

LA1γ(α)
.

Now let A2 : (x, y) 7→ (x,
√

1−e2√
1−t2 y) be the affine transformation that takes A1γ to a circle.

Then we have that the right and left tangents from a point p to A2A1γ are of equal length. We

denote this common length as DA2A1γ(p). Because the ratio of parallel lengths are preserved
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θ

θ′

α

α′

ω

ω

A1(γ)

RA1γ(θ)
LA1γ(α)

Figure 5: Construction of the function f which is invariant under β.

under affine transformations, we have that

RA1γ(θ)

LA1γ(α)
=
DA2A1γ(A2θ)

DA2A1γ(A2α)
.

Thus, if one sets f(θ) = 1
DA2A1γ

(A2θ)
, then the desired invariance is achieved. We now compute

DA2A1γ(A2θ) explicitly.

The coordinates of A2θ are given by (cos θ,
√

1−e2√
1−t2 sin θ), and A2A1γ is a disk centered at

the origin with radius t
e
. Using the Power of a Point Theorem, we have that

DA2A1γ(A2θ) =

√(
1− e2

t2

)(
1 +

t2

1− t2
sin2 θ

)

after simplification. We now solve for u such that du = f(θ)dθ and with u normalized onto

[0, 1] for θ on [0, 2π], which yields

u(θ, t) =
F (θ, ti√

1−t2 )

F (2π, ti√
1−t2 )

,
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where F is known as the incomplete elliptic integral of the first kind.

Having found u, we now solve for ct.

Proposition 2. Given ellipse γ with eccentricity t confocal to ellipse Γ with eccentricity e,

the constant ct for which β : u 7→ u+ ct maps u parallely along the billiard ball path tangent

to γ is given by ct = u(θt, t), where

θt = cos−1

(
−t2 + 2e2 − e4

t2 − 2e2t2 + e4

)
.

Proof. We compute θt, which is the first image of θ = 0 under the billiard ball trajectory with

caustic γ. It follows that ct is the image of θt under the coordinate change u. An illustration

0

θt

γ

Γ

Figure 6: Solving for ct = u(θt) utilizing one iteration of β.

of this proof is given in Figure 6. Let φ be such that ( e
t

cosφ, e
√

1−t2
t

sinφ) is the point of

tangency on γ from (1, 0). Differentiation gives us the slope of the tangent as

−
√

1− t2 cotφ, (3)

while the slope formula gives us the slope as

e
√

1− t2 sinφ

e cosφ− t
. (4)
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Equating (3) and (4), we find that φ = cos−1( e
t
) and the slope of the tangent is

−e
√

1− t2√
t2 − e2

.

Thus, the equation of the tangent to γ can be written as

y =
−e
√

1− t2√
t2 − e2

(x− 1). (5)

The equation of Γ is

x2 +
y2

1− e2
= 1. (6)

Substituting Equation 5 into the Equation 6 yields an x-coordinate of

−t2 + 2e2 − e4

t2 − 2e2t2 + e4
, (7)

which is equivalent to cos θt. Thus, taking cos−1 of (7) yields θt.

Remark 1. The eccentricity tn of the confocal caustic that corresponds to the family of

geodesics Γ(1, n) can be found by solving ct = 1
n

for t using Proposition 2.

Remark 2. If φ(x, t) is such that φ(u(θ, t), t) = θ (i.e. the inverse of u), then the radial

coordinate for the kth point (starting with 0 and going counterclockwise) of a closed geodesic

in Γ(1, n) is precisely φ( k
n
, tn). An illustration is given in Figure 7. Because u is one-to-one,

φ is well-defined. Moreover, from the definition of u, we have that φ is infintely differentiable

with no singularities and satisfies the property φ(x+ 1, t) = φ(x, t) + 2π.
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0

φ
(
1
n , tn

)φ
(
2
n , tn

)
φ
(
3
n , tn

)
. .
.

Figure 7: The angular coordinates for points on a closed geodesic of length n.

4 Length of Closed Geodesic

We now determine the length of our closed geodesic using the results from Section 3. We

define l(α, β) to be the Euclidean distance between the points on Γ determined by radial

coordinates α and β. We define the function gn(x) := l(φ(x
n
, tn), φ(x−1

n
, tn)) to be the length

of the segment between the two points determined by u coordinates x
n

and x−1
n

. Then the

length of our closed geodesic, Ln, is given as

Ln =
n∑
i=1

gn(i).

We seek the asymptotic expansion of Ln in terms of n. We begin with the following lemma.

Lemma 1. The function gn is n-periodic.

Proof. We have that φ(x+ 1, t) = φ(x, t) + 2π from Remark 2. Using this fact, we have

gn(x+ n) = l

(
φ
(x
n

+ 1, tn

)
, φ

(
x− 1

n
+ 1, tn

))
= l

(
φ
(x
n
, tn

)
+ 2π, φ

(
x− 1

n
, tn

)
+ 2π

)
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= l

(
φ
(x
n
, tn

)
, φ

(
x− 1

n
, tn

))
= gn(x).

The second-to-last equality holds true since l is a function of the sine and cosine of its two

arguments and is thus 2π-periodic.

With Lemma 1, we now prove the following proposition.

Proposition 3. The length of our closed geodesic Ln on ellipse Γ is asymptotically given as

Ln −
∫ n

0

gn(x)dx = O

(
1

np

)
∀p ∈ Z+.

Proof. The Euler-Maclaurin formula for Ln yields the following for all positive integers p,

n∑
i=1

gn(i) =

∫ n

0

gn(x)dx+
gn(n)− gn(0)

2
+

p∑
k=1

B2k

(2k)!
(g(2k−1)
n (n)− g(2k−1)

n (0)) +R, (8)

where Bi denotes the ith Bernoulli number and the remainder term is bounded as

|R| ≤ 2ζ(p)

(2π)p

∫ n

0

|g(p)
n (x)|dx,

where ζ denotes the Riemann zeta function [10]. However, gn(x) and all of its derivatives are

periodic with period n from Lemma 1. Thus, all terms on the right hand side of (8) vanish

except for the integral and the remainder term.

It now suffices to prove that |R| ≤ cp
np

for a constant cp independent of n. Let g1(x, tn) =

cos(φ(x, tn)) and g2(x, tn) = sin(φ(x, tn)). We prove that the integral in the bound for the
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remainder term is O( 1
np

). Using Taylor’s theorem, we have

gn(x) =

√(
g1

(x
n
, tn

)
− g1

(
x− 1

n
, tn

))2

+ (1− e2)

(
g1

(x
n
, tn

)
− g1

(
x− 1

n
, tn

))2

=

√(
− 1

n
g′1

(x
n
, tn

)
+O

(
1

n2

))2

+ (1− e2)

(
− 1

n
g′1

(x
n
, tn

)
+O

(
1

n2

))2

=
1

n

√
g′1

(x
n
, tn

)2

+ (1− e2)g′2

(x
n
, tn

)2

+O

(
1

n

)
.

The last equality is true since both g′1 and g′2 are finitely bounded for x ∈ [0, 1], allowing for

the O( 1
n
) term to appear. Then, we now have

gn(x) =
1

n

√
g′1

(x
n
, tn

)2

+ (1− e2)g′2

(x
n
, tn

)2

+O

(
1

n

)

=
1

n

√
φ′
(x
n
, tn

)2(
sin2

(
φ
(x
n
, tn

))
+ (1− e2) cos2

(
φ
(x
n
, tn

)))
+O

(
1

n

)
. (9)

We now prove that gn has the form 1
n

√
C +O

(
1
n

)
for a positive constant C that is finitely

bounded. Such a fact would imply the smoothness of g as well as a uniform upper bound on

all derivatives of g in x and n. Given that the sine and cosine of the same argument cannot

both be zero, it suffices to show that φ′ is nonzero and bounded above uniformly in x and

n. This is true since φ is infinitely differentiable with no singularities, as stated in Remark

2. Now, from (9), we see that the chain rule gives us the pth derivative of gn in the form

1
np+1h(x, n), where h is smooth and bounded above uniformly in x and n. Thus, we have

R ≤ 2ζ(p)

(2π)p

∫ n

0

|g(p)
n (x)|dx =

2ζ(p)

(2π)p

∫ n

0

1

np+1
h(x, n)dx =

2ζ(p)

(2π)p

∫ 1

0

1

np
h(nx, n)dx <

cp
np

,

completing the proof.

From here, the asymptotic expansion of Ln can be written using the power series expan-
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sion of gn. We outline the means by which one can calculate the asymptotics for Ln in the

following theorem.

Theorem 1. Suppose Γ is an ellipse with unit length semimajor axis and eccentricity e.

Then the asymptotic expansion of the length Ln of a closed geodesic on Γ with n reflection

points can be written as L(Γ) +
∞∑
i=1

ckn
−2k as n→∞, where L(Γ) denotes the perimeter of

Γ and the coefficients ck are derived from the power series expansions of elliptic functions.

Proof. The asymptotic expansion of Ln can be derived from the asymptotic expansion of gn

through term-by-term integration. To recall, we have our expression for gn(x) as

√(
cosφ

(x
n
, tn

)
− cosφ

(
x− 1

n
, tn

))2

+ (1− e2)

(
sinφ

(x
n
, tn

)
− sinφ

(
x− 1

n
, tn

))2

.

The power series expansions for cosine and sine are well known, as is the means to take

the square root of a power series. Thus, it suffices to derive the power series expansion for

φ(x
n
, tn). Written explicitly, we have

φ
(x
n
, tn

)
= F−1

(
x

n
F

(
2π,

tni√
1− t2n

)
,

tni√
1− t2n

)
.

The power series for F , the incomplete elliptic integral of the first kind, is given as

F (z,m) = z +
∞∑
i=1

∞∑
k=1

k−1∑
j=0

(
1
2

)
k

(
2k
j

)
(−1)i−j+k22i−2k+1(j − k)2im2k

k!(2i+ 1)!
z2i+1,

where ()k denotes the decreasing factorial of length k. The power series for F−1 can be

determined using the Lagrange inversion theorem, which is stated in Appendix A. Thus, it

remains to find the power series of tn.

Recall tn is the solution t to ct = 1
n

in Remark 1. Using the expression for ct in Proposition
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2, we write the series expansion in t for

ct =
F
(
θt,

ti√
1−t2

)
F
(

2π, ti√
1−t2

) =
F
(

cos−1 −t2+2e2−e4
t2−2e2t2+e4

, ti√
1−t2

)
F
(

2π, ti√
1−t2

)
using the standard operations on series. We then apply the Lagrange inversion theorem to

the series for ct and evaluate it at 1
n
, which produces the series expansion for tn.

We note that the series expansion for θt produces even powers of t, implying even powers

in the expansion of ct as well. Furthermore, the Lagrangian inversion preserves the even

powers of n for tn. Moreover, gn(x) is implicitly a function of tn, implying that only even

powers of n appear in our asymptotic expansion of Ln.

Remark 3. Theorem 5.15 in [2] states that the asymptotic expansion of the length of

geodesics on a general convex planar drum has only even powers of n. The proof of The-

orem 1 serves as an alternate proof of this fact in the specific case of the ellipse.

5 Conclusion

We studied the length of closed geodesics on the ellipse with the goal of determining whether

ellipses are spectrally invariant in the convex, planar domain with smooth boundary. We

computed a coordinate change that was parallely translated under the billiard ball map that

helped us find the precise calculation of the asymptotics of the lengths of closed geodesics

on the ellipse.

The next step is to calculate the function ζ that describes the vector flow of the billiard

map in Theorem 2. Calculating ζ would require an alternative coordinate to the velocity

coordinate σ that can be written explicitly in terms of u and the eccentricity t of the confocal

caustic. Using the power series of ζ, we could then determine the integral invariants from the

coefficients of the asymptotic expansion of the length of our closed geodesic and thus have
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the capability to analyze the spectral invariance of the ellipse.
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Appendix A Lagrange Inversion Theorem

Suppose f(w) = z, where f is analytic at a point a. The series for the inverse function g,

such that g(z) = w, is given in the following theorem.

Theorem (Lagrange Inversion). The series expansion of g is given by

g(z) = a+
∞∑
n=1

(
lim
w→a

(
(z − f(a))n

n!

dn−1

dwn−1

(
w − a

f(w)− f(a)

)n))
.

Alternatively, according to Morse and Feshbach [11], if the series expansion for f is given by

f(x) =
n∑
i=1

aix
i, then the series expansion for g is given by g(x) =

n∑
i=1

Aix
i, where

Ai =
1

iai1

∑
s,t,u,...

n(s+t+u+... )

s!t!u! · · ·

(
a2

a1

)s(
a3

a1

)t(
a4

a1

)u
· · · ,

for s+ 2t+ 3u+ · · · = n− 1. Here, n(k) denotes the rising factorial of length k.
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