Computer science problems.

About the problems. This problem set explores hash tables and hashing
functions.

What you need to do. For these problems we ask you to write a program
(or programs), as well as write some “paper-and-pencil” solutions (use any text
editor that you see fit, or scan an actual handwritten solution; convert the result
to pdf format if possible).

You may use any programming language you want for your programs, as long
as its full implementation is available at no cost and with an easy installation
for both a Mac and Windows (free trial versions do not qualify). It is best
to implement each problem as a separate function so that we can run them
separately. We will be looking for the following in your submissions:

e Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

e Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well — you don’t want
it to fail our tests!

e Code documentation and instructions. Important: do not include
your name in comments or in any file names. If you are submitting
your answers to non-code problems in a separate file, also make sure that it
does not have your name in the contents or in the file name. The only place
where you specify your name is the zip file with your solutions which must
be of the form yourlastname-CS-solution.zip (replace yourlastname
by your actual last name). Make sure that you use zip compression,
and not any other one, such as tar.

Please note that we only need the source files since we will be compiling
them before running. The compiled code and executables just clutter your
submission - please avoid submitting them if possible.

In the beginning of each file specify, in comments:

1. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

2. The programming language, including the version (Java 1.20, for in-
stance), the development framework (such as VS Code) that you used,
unless you were using just a plaintext editor (notepad, emacs, etc),
and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-



gram file or as a separate file, clearly named. Please read the instruc-
tions for individual problems on the input and output data.
Input/output files are assumed to be at the default location for your
program’s project. Make it clear in comments where that is.

4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

7. Make sure that you clearly specify where input files are supposed to
be located, provide an example input file and an example of how the
file name would be specified in the input. Use relative paths (from
the top of the project or from the executable), not absolute paths.

e (lear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average
is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

Background and main definitions. This year’s problem deals with hash
tables. This sections gives a brief overview of hash tables. For more information
see [2] and the section on hash tables in [I], or any other book on data structure
that provides a detailed coverage of hash tables, including collision resolution.

Hash tables are a popular data structure that, under certain assumptions,
allows a constant time data lookup (i.e. the time looking for a specific element
doesn’t depend on the number of elements already stored; an element is found
“instantly”). Typically data stored in a hash table has a key that’s used for
hashing and a value that’s bound to that key. Data is inserted into the hash
table, but typically not removed.



The basic idea of a hash table is as follows:

1.

A hash table is an array (or a vector, depending on what’s provided by
your programming language) of size n. It is initially filled with some value
that marks an empty spot. We will refer to this value as NULL.

. In order to insert an element, a function (usually referred to as a hash

function) is applied to the element. If the element is a key/value pair then
the hash function is applied to the key.
The hash function produces an index in the array.

. If the index in the array has the NULL value, then the element is assigned

to that spot.

. If the spot is not NULL (i.e. already has an element in it), that’s called

a collision. When a collision happens, a collision resolution procedure is
applied. There are two basic approaches: chaining which uses additional
storage, such as linked lists, and open addressing which is trying to find
a different spot for the element using another function (known as a prob-
ing function); the process of determining which index to check next and
checking that index is known as a probe. If that spot is full as well, that’s
another collision, and the collision resolution is applied again (so another
probe is performed), until the spot is found.

. The size of the array n is known as the table’s capacity. The table cannot

hold more than n elements.

. The number of elements in the hash table is referred to as the hash table’s

size; we will use s to denote it. Note that 0 < s < n.

S

. The fraction 2 (as a percentage value) is referred to as the load factor.

For example, when the table is % full, its load factor is 75%.

. Hash tables are typically used to retrieve values associated with the keys.

In order to look up a key, the process similar to inserting an element is
performed: first the hash function is applied, then the location at the
index returned by the has function is checked to see if the key there is the
one we are looking for. If it is, we return the corresponding value. If it’s
NULL, then the key doesn’t appear in the hash table. If it’s a different key
then collision resolution is performed until probing finds the index with
the key we are looking for or with NULL.

Some important conventions and assumptions for this problem set:

1.
2.

In all examples we will just consider the keys, not associated values.

The keys are assumed to be non-negative integers.

. The keys are assumed to be distinct. If there already is an element in the

hash table with the exact same key as the one you are inserting, that’s an
erTor.



4. Hash tables are usually resizable, i.e. when the load factor becomes high
(typically around 75%), a new, larger array is allocated and all the ele-
ments are moved over to the new table. However, for our problems we
assume that the table is never resized.

5. We only use open addressing, never chaining.
6. The indices in the array start at 0.

We will introduce more material in the problems themselves.
Problem 1 (non-programming): the basics of hash tables. Please answer
the following questions:

1. Why hash tables keys in a program should be of an immutable type, such
as integers or immutable strings?

2. Assuming that there are more possible keys than the capacity of the hash
table, why some amount of collisions is inevitable?

3. If you are given a hash table with capacity 100. Why the function h(k) = k
mod 10 is not a good hash function for this table? Here k is the key
we are inserting and mod is the modulus operator (see https://en.
wikipedia.org/wiki/Modular_arithmetic| for details).

4. Given open-addressing collision resolution, why deleting a key from a table
by replacing it by NULL doesn’t work? Describe the issue precisely.

Problem 2 (non-programming): typical hash functions and traditional
collision resolution. If the keys are integers, the most common hash function
is h(k) = k mod n, where n is the table capacity. It is simple and always
returns a valid array index.

Recall that if a collision occurs (i.e. the index returned by the hash function
is occupied), a probing function is used to find the next spot. In addition to the
key k the probing function takes the probe number i, where i is 0 when the first
attempt is made, i.e. the h(k) is tried, and then ¢ = 1 if that spot is occupied,
etc. Typically instead of specifying the hash function and the probing function
separately, we just write the probing function in such a way that it equals to
h(k) when ¢ = 0.

Here are several common probing functions, written as p(k,¢), where k is
the key and ¢ is the probe number:

1. Linear probing uses a linear probing function to find the next position of
the key, i.e. a function of the form

p(k,i) = (h(k) + ci) modn

Taking the result modulo n guarantees that the result is a valid index.
c is called the step of linear probing. Most commonly ¢ = 1, i.e. linear
probing will just try the next index if the one it’s probing is unavailable.
If ¢ > 1, it must be relatively prime with n.


https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Modular_arithmetic

2. Quadratic probing uses a function quadratic in 7 (the probe number) to
find the next spot to probe:

p(k,i) = (h(k) + c1i + c2i®) mod n

Depending on choices made for n (for example, in some hash tables n =
2™ for some m, and in some tables n is chosen to be prime), there are
different common choices for ¢; and co. The wikipedia page https://en.
wikipedia.org/wiki/Quadratic_probing| provides more details.

3. Double hashing involves a “secondary” hash function g(k) for collision
resolution:
plk, ) = (h(k) + ig(k)) mod n

If h(k) = k mod n then g(k) is often chosen to be g(k) = (kK mod m)+1,

where m < n and m is relatively prime to n.

Linear probing is the simplest of the three strategies. However, it leads to an
issue known as clustering: if several keys ended up following the same probing
sequence, a new key that collides with any of them would also follow this se-
quence, so the probing sequences get longer and longer, leading to linear search
times, not constant.

Based on these functions, please answer the following questions:

1. What’s the point of adding 1 to & mod m in double hashing? Show an
example of a specific issue that this addition is preventing.

2. Explain why linear probing (with ¢ relatively prime to n) and double
hashing (with g(k) = (k mod m) + 1, where m < n and both m and n
are prime) always find an empty spot for a key being inserted into the
table, as long as s < n. Note that this is not always the case for quadratic
probing - you don’t need to explain why.

3. Explain how both quadratic probing and double-hashing are reducing clus-
tering. Be specific about the differences in these two methods.

4. The order of inserting keys into a hash table matters. Consider a hash
table with capacity n = 11, h(k) = k mod 11. Show the hash table that
results from inserting the keys 14,27, 33, 3,18, 13, 37,15,22 in this order.
Then show the same table with the same hash function and probing func-
tion, but with the keys inserted in the opposite order: 22,15,37,13, 18, 3,
33,27,14. How many collisions (i.e. probes with ¢ > 0) took place in each
of these cases?

Answer these questions for each of the following collision resolution func-
tions:

(a) Linear probing with ¢ = 2
(b) Quadratic probing with ¢; =0,¢5 =1
(¢) Double hashing with g(k) = (kK mod 3) + 1


https://en.wikipedia.org/wiki/Quadratic_probing
https://en.wikipedia.org/wiki/Quadratic_probing

5. You are given the following hash table
44 _13 --1624 186 _ 21

(NULL values are dented by underscores). Can it be the result of inserting
the keys using linear probing with ¢ = 1 and h(k) = &k mod 117 if yes,
give the order of the keys that result in this table. If not, clearly explain
why.

Description of the main problem. The main problem of this problem set
deals with constructing custom-made hash functions and probing functions for
known non-uniform key distributions while trying to minimize the total number
of operations performed.

The keys are positive integer numbers. Each input set consists of decimal
numbers of a fixed length L (different for different input sets), where 4 < L < 10.
Leading zeros (if any) will be explicitly written. Each digit of the key has its
own non-uniform distribution, i.e. some digits are more likely to appear in a
given position than other ones. Some digits may have a frequency of zero in a
particular position, i.e. they don’t appear in that position at all.

The distributions of each digit will be given as input before the actual keys
are given. Each distribution consists of 10 non-negative numbers that add up to
1, where the first number indicates the proportion of 0s, the second proportion
of 1s, etc. For example, the distribution

000.200.300000.5

means that this position consists of 20% of 2s, 30% of 4s, and 50% of 9s. No
other digits appear.

In order to specify distributions of L-digit numbers we need to provide L
distributions. For example, for 6-digit numbers the input may be like this:

000.200.300000.5

0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.5 0 0
0.10.10.10.10.10.10.10.10.10.1
0000000100
1/300001/301/300
0.10.10.10.10.0560.10.10.050.10.2

Here is an example of ten 6-digit numbers generated by this combined distribu-
tion:

408775 942771 208756 943775 915704 476759 470770 956751 945758 238754

The hash table may have a capacity 1000 < n < 1024, you may chose the
capacity that works better with your algorithm. You may set it once and for all
or choose it after you have read the digits distribution.

Hash function and probing functions. Your goal is to develop a hash
function and the probing function based on the distributions to optimize the
hash table performance with large load factors. The performance is measured



based on the total number of operations inserting the numbers into the hash
table, including all operations needed for collision resolution.
The following operations will be counted:

e Addition of two numbers of length no more than L,
e Multiplication of two numbers of length no more than L,

e Taking a number of length L modulo another number (of the same length
or smaller),

e Performing any bitwise operations, such as shift, &, etc. The result must
be no longer that L + 1 in decimal representation,

e Copying a number into another memory location. Only a portion of length
L or smaller may be copied as one operation,

e Performing a comparison for equality or inequality of two numbers of
length L or smaller (checking if the hash table position is NULL doesn’t
count).

The length of the number is the length of its decimal representation. The actual
storage in computer memory (i.e. storing it as an int or a long) doesn’t matter.
Operations on numbers with the length of L + 1 are disallowed. You may
compute such operations iteratively by taking the result modulo something of
length L or smaller after each iteration (for example, when computing exponen-
tiation).
Example of counting operations. Suppose are using double hashing, i.e.

p(k,i) = (h(k) +ig(k)) mod n,

where g(k) = (k' mod m)+1 for some m. In order to optimize it, we can rewrite
it the following way, in pseudocode:

if (i = 0)
return (k mod n)
else

return ((k mod n) + i *((k mod m) + 1)) mod n

This way we are avoiding performing multiplication by 0 in the first probe (when
i=0).

Suppose you found the place for the key at ¢« = 1, then you performed the
following operations:

e The first attempt computed £ mod n and one comparison of 7 to 0 in the
if statement, for the total of 2 operations.

e The probe with i = 1 computes ((k mod n) +i(k mod m)+ 1) mod n,
performing 3 modulo operations, 2 additions, and multiplication by i (even
though ¢ = 1, the multiplication still needs to be performed). It also
performs one comparison of ¢ to 0, so the total for this step is 7 operations.



Thus the total to insert the key into the hash table is 9 operations.

Your functions may use any approaches you would like. If you are using
operations not listed here, please ask about their costs and whether they are
allowed; be specific.

Problem 3 (programming): implementing custom-made hash func-
tions and collision resolution. Your goal is to write a program that works
as following:

e It reads the number L on its own line, followed by the distribution of digits
in the format given above (L lines of 10 numbers each, the numbers can
be given as ratios or as decimals).

o It checks that the distribution is valid: each line consists of 10 non-negative
numbers that add up to 1 within +0.00000001. If it’s invalid, the program
stops and prints an error message, indicating the first line where the error
appeared.

e If the distribution is valid, the program determines the hash table capacity
n (1000 < n < 1024) and chooses the hash function and the probing
function. You may choose them from the list or set some parameters or
compute them on the fly if your language allows you to - all of these are
valid options. The hash function and the probing function may also be
combined.

e The program outputs the hash table size and starts a loop prompting
for a file name. The file contains m items generated by the distribution,
nx0.75 < m < n=*0.95 (we are testing the hash table with the load factor
between 75% and 95%). The elements are unique. The elements may be
separated by spaces, tabs, and newlines.

The path to the file is relative to your executable or to the default loca-
tion of your project (Java projects tend to have a default location). In
comments clearly specify where the input files are located.

e The program uses its hash function and probing function to insert the
elements into the table in the given order.

e After the program reaches the end of file it prints out the total number
of operations computed by the hash function and the probing functions
(together, on all elements).

e You give the user an option to print the hash table.

¢ You also give the user an option to search for elements (as many as they
would like). For each input number your program responds with an index
if the item is found and a message "not in the table” if it’s not. If the
given number has a wrong length, print an error message and then prompt
for another number.



After these interactions you clear the table, setting it all to NULL values,
set the operation counter(s) to 0, and prompt for another file name with
a different set of test data for the same distribution. Entering Q ends the
program.

Some restrictions:

You may use only small constant (in n) amount of memory in addition
to the hash table; you may allocate arrays of length 10 (for 10 digits) in
addition to the ones where you store the distributions, but no more than
L of such additional arrays

You may not store any information about the elements you have already
inserted

You may not keep the count of the elements (your probing function, how-
ever, may use the probe number in any way you’d like)

You may not perform any look-ahead in the data

Your program will be graded on:

Correctness (if it’s not always correct, i.e. the hash function doesn’t work
as specified for insertion and search, then the number of operations doesn’t
matter; correctness also means that you count the operations correctly)

Clarity of the algorithms and a clear explanation of how it works and why
it’s correct

Minimization of the number of operations on several test runs with differ-
ent load factors

Test examples and the quality of testing. Don’t forget to test how your
functions count the operations

The setup for input and output

Clear instructions for compiling and running your program. C/C++ users
- please don’t use makefiles since they are specific to the operating system!
Generally your code should be runnable in a bare-bones command-line
setup and not require a specific IDE or tools

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[2] Thomas Mailund. The Joys of Hashing: Hash Table Programming with C.
APress, 1st edition, 2019.



