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Background: Groups

(Z,+) = {. . . ,−2,−1,0,1,2, . . .}

A group G is a set under one binary operator such that:
• G is closed;
• the operator is associative;

• (a + b) + c = a + (b + c);
• there is an identity element;
• each element has an inverse.

Example
• (Q \ {0}, ·);
• ({1,−1, i ,−i}, ·).
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Background: Monoids

(N0,+) = {0,1,2, . . .}

A monoid M is a set under one binary operator such that:
• M is closed;
• the operator is associative;

• (a + b) + c = a + (b + c);
• there is an identity element;
• each element has an inverse.

Example
• (Z,+);
• (N, ·).
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Background: Integral Domains

(Z,+, ·)

An integral domain D is a set under two binary operators such that:
• (D,+) is a group;
• (D \ {0}, ·) is a monoid;
• Multiplication distributes over addition;
• The only zero-divisor is 0.

An element d ∈ D is a zero-divisor if there exists a nonzero element
d ′ such that dd ′ = 0.

Example
• (Z[x ],+, ·).

NOT an integral domain: Z/4Z = {0,1,2,3} (“integers mod 4”).
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Background: Semidomains

(N0,+, ·)

A semidomain S is a subset of an integral domain such that:
• (S,+) is a monoid;
• (S \ {0}, ·) is a monoid.

Example
• (N0[x ],+, ·);
• (Z[x ],+, ·).

Every integral domain is a semidomain.
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Background: Semisubtractive Semidomains

Given a semidomain S, we will define its group of differences,
denoted by G (S). The object G (S) is also called the Grothendieck
group of S.

G (S) consists of pairs of elements (a,b) for a,b ∈ S, representing
the value a− b. We define a− b to be equal to c − d if a+ d = b + c.

G (S) is not only a semidomain, but an integral domain. In fact, it is
the least integral domain containing S. Thus, S is a subset of the
integral domain G (S).

Examples
• G (N0) = Z;
• G (N0[x ]) = Z[x ].
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Background: Semisubtractive Semidomains

We say a semidomain S is semisubtractive if for all a,b ∈ S, either
a − b or b − a is in S. More formally, there must exist some x ∈ S
such that a + x = b or b + x = a.

Example
N0 is a semisubtractive semidomain. For a,b ∈ N0, a − b ∈ N0 if
a ≥ b and b − a ∈ N0 if b ≥ a. However, it is not an integral domain
because none of its positive elements have additive inverses.

Example
S = N0 + xZ[x ] also forms a semisubtractive semidomain. For
polynomials P,Q ∈ S, at least one of P −Q,Q −P is in S depending
on which has a greater constant term. However, it is not an integral
domain because 1, for example, does not have an additive inverse.
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Background: Semisubtractive Semidomains

Equivalently, we may say that a semidomain S is semisubtractive if
for all s ∈ G (S), either s or −s is in S. Since all s ∈ G (S) can be
written as a − b for a,b ∈ S, this is equivalent to our previous
example.

Example
Consider the semidomain S of integer polynomials whose lowest
degree term is positive (in addition to 0).

The Grothendieck group of S will be Z[x ].

Finally, this set is closed under multiplication and addition.
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Motivation

Why should we care about these objects?

• Semisubtractive semidomains generalize the properties of
integral domains.

• What properties are shared between integral domains and
semisubtractive semidomains?

• In future research, we only have to prove that an object is a
semisubtractive semidomain to understand its properties.

• Semisubtractive semidomains correspond closely to the
natural numbers.
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Factorization Properties

Let S be a semisubtractive semidomain.
• An element u ∈ S is invertible if there exists u′ ∈ S such that

uu′ = 1.
• An element a ∈ S is an atom if a cannot be expressed as a

product of two non-invertible elements of S. The set of atoms
of S is denoted A (S).

• S is atomic if every element of S can be expressed as a
product of atoms.

• Two factorizations are considered the same if the atoms in the
two factorizations only differ by invertible elements. (For
example, in Z, 14 = 2 · 7 and 14 = (−2)(−7) would be
considered the same factorization, because −1 is invertible.)

Example
• N0;

• N0[x ].
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Factorization Properties

There are several properties that an atomic semisubtractive
semidomain can have that describe the factorizations of elements.

• Bounded Factorization
• Finite Factorization
• Half-Factorial
• Unique Factorization

Question
How do the factorization properties of S relate to the factorization
properties of G (S)?
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Bounded Factorization

Definition
An atomic semisubtractive semidomain S is a bounded
factorization semidomain (BFS) if for each s ∈ S, there are finitely
many lengths that a factorization of s can have.

Example
• The Gaussian integers Z[i].

Theorem (Fox-Goel-Liao, 2023)
Let S be a semisubtractive semidomain. Then, S is a bounded
factorization semidomain iff G (S) is a bounded factorization
domain.
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Finite Factorization

Definition
An atomic semisubtractive semidomain S is a finite factorization
semidomain (FFS) if for each s ∈ S, there are finitely many
factorizations of s.

Every FFS is a BFS.

Example
• N0 + x2N0[x ];
• N0 + xZ[x ].

Theorem (Fox-Goel-Liao, 2023)
Let S be a semisubtractive semidomain. Then, S is a finite
factorization semidomain iff G (S) is a finite factorization domain.
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Half-Factorial

Definition
An atomic semisubtractive semidomain S is a half-factorial
semidomain if for each s ∈ S, there is one possible length of
factorization of s.

Every HFS is a BFS.

Example
• N0 + Z

√
2;

• ∑
p∈N0+xZ[x ]N0yp.

Theorem (Fox-Goel-Liao, 2023)
Let S be a semisubtractive semidomain. Then, S is a half-factorial
semidomain iff G (S) is a half-factorial domain and
A (S) = S ∩ A (G (S)).
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Unique Factorization

Definition
An atomic semisubtractive semidomain S is a unique factorization
semidomain (UFS) if for each s ∈ S, there is one factorizations of s.

Every UFS is an HFS and FFS.

Example
• N0;
• N0 + xZ[x ].

Theorem (Fox-Goel-Liao, 2023)
Let S be a semisubtractive semidomain. If S is a unique
factorization semidomain, then G (S) is a unique factorization
domain.
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Thank you!
Questions?


