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Group of Elliptic Curves

Elliptic Curves

Definition

A cubic curve in normal form is an equation of the form

y2 = f (x) = x3 + ax2 + bx + c .

When the roots of f are distinct, we call this an elliptic curve.

For example, y2 = x3 − 16x + 16 defines the following valid elliptic curve.
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Group of Elliptic Curves

Integral Points

Theorem (Baker, Siegel)

The number of Z-points on an elliptic curve is finite, moreover the
coordinates of the points are bounded in terms of the coefficients of the
curve.
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For example, in our curve y2 = x3 − 16x + 16,
the set of integer points is
(±4,±4), (0,±4), (1,±1), (8,±20), (24,±116).
There isn’t much structure here.

Given a curve E , a rational point P ∈ E (Q) is a point (x , y) where
x , y ∈ Q.
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Group of Elliptic Curves

Group Structure

Definition

Given any two rational points P,Q on an elliptic curve E , define P ∗ Q as
the third point that the line through P,Q intersects E at.

It turns out that if P,Q are rational points, then P ∗ Q is also rational.
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For example, on our curve y2 = x3 − 16x + 16,
if P = (1,−1),Q = (4, 4) then
P ∗ Q =

(
−20

9 ,−172
27

)
.

Notice that ∗ is commutative since swapping
P,Q doesn’t change the line through them.
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Group of Elliptic Curves

Group Structure (cont.)

Definition

Let O be a point at infinity along E and define

P ⊕ Q := O ∗ (P ∗ Q).

The set of rational points on E including O with operation ⊕ form the
group of the elliptic curve.
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P ⊕ Q
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Continuing from the last slide,
P = (1,−1),Q = (4, 4), so we can compute
P ⊕ Q =

(
−20

9 ,
172
27

)
.

As ∗ is commutative ⊕ is also commutative.
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Group of Elliptic Curves

Doubling Points

We can add points to themselves, we just take the line through P,P to be
the line tangent to the curve at P.

P

P ∗ P

P ⊕ P
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For example, taking our curve
y2 = x3 − 16x + 16, with point P = (0, 4),
then the tangent line at P is y = 4− 2x .
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Birch and Swinnerton-Dyer Conjecture

Ranks of Elliptic Curves

Theorem (Mordell)

The group of the elliptic curve is finitely generated: we can say
E (Q) ∼= Zq1 × Zq2 × · · · × Zqn × Zr for some positive integers
q1, · · · , qn, r . We define the Mordell-Weil rank of the curve as r .

The torsion subgroup E (Q)tors is the subgroup of points that have finite
order, so we can write

E (Q) ∼= E (Q)tors × Zr .

Theorems of Mazur and Nagell-Lutz let us compute the torsion subgroup
easily, so knowing the Mordell-Weil rank of the curve is enough to know
the group of the curve.
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Birch and Swinnerton-Dyer Conjecture

Birch and Swinnerton-Dyer Conjecture

The L-function of the elliptic curve is defined as

LE (s) =
∞∑
n=1

ann
−s

where an encodes data about the number of points on the curve over finite
fields, which satisfies a certain functional equation (F.E.).
Then we define the analytic rank as

ran = ords=1 L(E , s),

the order of vanishing at the point of symmetry of the F.E.
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Birch and Swinnerton-Dyer Conjecture

Birch and Swinnerton-Dyer Conjecture

Conjecture (Birch and Swinnerton-Dyer)

The analytic and Mordell-Weil rank are the same.

Currently, the Mordell-Weil rank is “hard” to compute while the analytic
rank is (in theory) simpler, amounting to showing the value of a particular
function is nonzero, so this conjecture ineffectively solves elliptic curves.
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Birch and Swinnerton-Dyer Conjecture

Formal Group

We can parameterize the curve using a coordinate z such that there are
Laurent series

x , y ∈ Z[a, b, c]JzK

such that P(z) = (x(z), y(z)) ∈ E .
Using this, we can find a power series F (x , y) satisfying the equation

P(z1)⊕ P(z2) = P(F (z1, z2)).

We call F the formal group law of the elliptic curve.
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Our Work

Formal Logarithm

Definition

The formal logarithm is the integral of the invariant differential:

logF (T ) =

∫
FX (0,T )−1dT .

The formal logarithm is an isomorphism mapping a formal group to the
additive group, that is

logF (F (A,B)) = logF (A) + logF (B).

The formal logarithm detects torsion points: a point is torsion if and only
if its formal logarithm converges to 0 over the p-adic integers.
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Our Work

Main result

Theorem

Let E ,E ′ be elliptic curves over Q with conductors N,N ′. Suppose
E [pr ] ∼= E ′[pr ].
Then letting P be the Heegner point of conductor 1 when p is split in K ,
conductor p2 when p is inert in K and conductor p when p is ramified in
K , we haveL̃p(E , 1)

∏
ℓ|NN′/M

Lℓ(E , 1)

 · logÊ (PE )

≡ ±

L̃p(E , 1)
∏

ℓ|NN′/M

Lℓ(E
′, 1)

 · logÊ ′(PE ′) (mod pr ).
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Our Work

Application

Definition

Given an elliptic curve E : y2 = f (x) then the quadratic twist by d is

Ed : dy2 = f (x).

Theorem

Let N be the conductor of E . Suppose E ′ = Ed where (N, d) = 1. Then

L̃2(E , 1) ·

∏
ℓ|d

Lℓ(E , 1)

 · logÊ (PE ) ≡ L̃2(E
′, 1) · logÊ ′(PE ′) (mod 2).

Moreover, if they aren’t congruent to 0, then BSD holds for E ,Ed .

We use this theorem to “propagate BSD”. By showing the left hand side is
nonzero mod 2, we can show a whole quadratic twist family satisfies BSD.
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Our Work
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