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Rook Numbers

Definition

Define a board B ⊆ [n]× [n] as a subset of the cells of an n by n grid.

Definition

For a board B, define the rook number ri (B) as the number of ways to
place i non-attacking rooks on the cells of B.
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Example

In the above board B, we have r3(B) = 2.
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Hit Numbers

Definition

For a board B ⊆ [n]× [n], define the hit number hi (B) as the number of
ways to place n non-attacking rooks in the [n]× [n] grid such that exactly
i rooks lie in B.
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Example

In the previous board B, we have h2(B) = 3.
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Rook-Hit Relation

Rook-Hit Number Relation (Irving-Kaplansky, 1946)

The rook and hit numbers are related by the equation

n∑
i=0

hi (B)t
i =

n∑
i=0

ri (B)(n − i)!(t − 1)i .

Example

In the previous board, r3(B) = 2, r2(B) = 9, r1(B) = 6, r0(B) = 1, and
h3(B) = 2, h2(B) = 3, h1(B) = 0, h0(B) = 1, so

2t3 + 3t2 + 0t + 1 = 2(0!)(t − 1)3 + 9(1!)(t − 1)2 + 6(2!)(t − 1) + 1(3!)

Jeffrey Chen Positivity Properties of the q-Hit Numbers October 2022 4 / 14



Rook-Hit Relation

Rook-Hit Number Relation (Irving-Kaplansky, 1946)

The rook and hit numbers are related by the equation

n∑
i=0

hi (B)t
i =

n∑
i=0

ri (B)(n − i)!(t − 1)i .

Example

In the previous board, r3(B) = 2, r2(B) = 9, r1(B) = 6, r0(B) = 1, and
h3(B) = 2, h2(B) = 3, h1(B) = 0, h0(B) = 1, so

2t3 + 3t2 + 0t + 1 = 2(0!)(t − 1)3 + 9(1!)(t − 1)2 + 6(2!)(t − 1) + 1(3!)

Jeffrey Chen Positivity Properties of the q-Hit Numbers October 2022 4 / 14



Finite Field Matrix Counting

Definition

For a board B ⊆ [n]× [n], define mi (B, q) as the number of matrices in Fq

(finite field of size q) with support (set of nonzero entries) in B and rank i .

Example

m3(B) = #


a 0 0
0 b 0
0 0 c

 : a, b, c ∈ Fq \ {0}


= (q − 1)3
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Finite Field Matrix Counting

Example

m3(B, q) = #


 | | |
v1 v2 v3
| | |

 : v1, v2, v3 ∈ F3
q are linearly independent



= (q3 − 1)(q3 − q)(q3 − q2)
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q-rook Numbers

Proposition (Lewis-Liu-Morales-Panova-Sam-Zhang, 2011)

We have
mi (B, q) ≡ ri (B)(q − 1)i (mod (q − 1)i+1).

Definition

Define the q-rook number Mi (B, q) = mi (B, q)/(q − 1)i .

Mi (B, q) is often (surprisingly) polynomial in q. If it is, then Mi (B, 1)
must be ri (B).
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q-rook Numbers

Example

m3(B, q) = (q − 1)3

M3(B, q) = 1

M3(B, 1) = 1

Example

m3(B, q) = (q3 − 1)(q3 − q)(q3 − q2)

M3(B, q) = q3(q + 1)(q2 + q + 1)

M3(B, 1) = 6
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Fano Plane

Example (Stembridge 1998)

Mr (B, x + 1) is not always a polynomial: for the Fano plane F ,

M7(F , x + 1) = (x + 1)3(x11 + 17x10 + 135x9 + 650x8 + 2043x7+

(4236− Z2)x
6 + 5845x5 + 5386x4 + 3260x3+

1236x2 + 264x + 24)

where Z2 is 0 if x is odd and 1 if x is even.
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q-analogues

We define:

Definition

[n]q = 1 + q + q2 + · · ·+ qn−1.

[n]1 = 1 + 12 + · · ·+ 1n−1 = n.

Definition

[n]!q = [n]q[n − 1]q . . . [1]q.

[n]!1 = (n)(n − 1) . . . 1 = n!.
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q-hit Numbers

Definition (Lewis-Morales 2020)

Define the q-hit numbers Hi (B, q) for a board B ⊆ [n]× [n] with the
equation:

n∑
i=0

Hi (B, q)t
i = q(

n
2)

n∑
i=0

Mi (B, q)[n − i ]!q

i−1∏
j=0

(tq−j − 1).

Compare to:

Theorem (Irving-Kaplansky 1946)

n∑
i=0

hi (B)t
i =

n∑
i=0

ri (B)(n − i)!(t − 1)i .

We have
Hi (B, q) ≡ hi (B) (mod q − 1).
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q-hit Numbers

Example

For above board B = [2]× [2]:

M0(B) = 1.

M1(B) = ((q2 − 1)(q − 1) + 2(q2 − 1))/(q − 1) = (q + 1)2.

M2(B) = (q2 − 1)(q2 − q)/(q − 1)2 = q(q + 1).

H0(B, q) + H1(B, q)t + H2(B, q)t
2

= q(1[2− 0]!q + (q + 1)2[2− 1]!q(t − 1)

+ q(q + 1)[2− 2]!q(t − 1)(tq−1 − 1)).

So H2(B, q) = q2 + q. When q = 1, then H2(B, 1) = 2 = h2(B).
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Our Work

Conjecture

For a board B, if some polynomial P of degree k − 1 exists where
P(x) = Hi (B, x + 1) (mod xk) for all x in a particular residue class (x ≡ a
(mod p)) for some a and p), then P has nonnegative coefficients in x .

Theorem (C-Selover, 22+)

The above is true for k = 2.
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