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Symmetric Functions

Definitions

Define the elementary symmetric functions by:

ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n
xi1 · · ·xin

e2(x1, x2, x3) = x1x2 + x2x3 + x1x3

Define the complete homogenous symmetric functions by:

hk(x1, . . . , xn) =
∑

1≤i1≤...≤ik≤n
xi1 · · ·xin

h2(x1, x2, x3) = x21 + x22 + x23 + x1x2 + x2x3 + x1x3
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Goals and Motivation

1 To develop a q-analogue of symmetric functions.

2 The ”odd” (q = −1) nilHecke algebra can be used in
categorification of quantum groups.

We expect that our q-analogue can also be used in
categorification.

3 Our q-bialgebra also has connections to 4D-topology.
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Introduction to q-Bialgebras

Definition: Algebra

An algebra A is characterized by the following two maps:

η : C→ A

m : A⊗A→ A

q-Swap and Identity Maps

τ : v ⊗ w → q|v||w|w ⊗ v
1A : A→ A
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Introduction to q-Bialgebras

Multiplication

We define the multiplication on A⊗A by

(a⊗ b)(c⊗ d) = q|b||c|(ac⊗ bd)

Multiplication map m2

The multiplication map m2: A
⊗4 → A⊗4 is

m2 = (m⊗m)(1A ⊗ τ ⊗ 1A)
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Introduction to q-Bialgebras

Definition: Coalgebra

A coalgebra has the following maps:

ε : A→ C
∆ : A→ A⊗A

Definition: Bialgebra

A bialgebra has all four maps η, m, ε, and ∆, with the added
compatibility that the comultiplication is an algebra
homomorphism.
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Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

Let NΛq be a free, associative, Z-graded C-algebra with
generators h1, h2.... Let q ∈ C.

We define h0 = 1, hi = 0 for i < 0, and deg(hk) = k.

We define hλ = hλ1hλ2 ...hλr .

Define multiplication as:
(w ⊗ x)(y ⊗ z) = qdeg(x)deg(y)(wy ⊗ xz).
Define comultiplication as:

∆(hn) =
n∑

m=0
hm ⊗ hn−m
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Diagrammatics for the Bilinear Form

Let’s consider the method to determine (h1h2h1, h2h2).

Use platforms with k strands to represent hk.

Rules

There are no triple intersections, no critical points with
respect to the height function, no instances of two curves
intersecting at two or more points, and no crossing between
curves originating from the same platform.

(h1h2h1, h2h2) = 1 + 2q2 + q3
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q-Symmetric Functions

Definition

Define Symq ∼= NΛq/R, where R is the radical of the
bilinear form.

The ”odd case” refers to q = −1, studied in [EK].

The ”even” case refers to q = 1, studied in [GKLLRT].

Diagrammatic Property

1 No strands from different tensor factors intersect:

(w ⊗ x, y ⊗ z) = (w, y)(x, z).
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The Elementary Symmetric Functions

Definitions

Inductively define
n∑
k=0

(−1)kq(
k
2)hn−kek = 0

e1 = h1
qe2 = h21 − h2
We will use a blue platform with k strands to denote ek.

Theorem

(hλ, ek) = 0 if |λ| = k, unless λ = 1k.



The Elementary Symmetric Functions

Definitions

Inductively define
n∑
k=0

(−1)kq(
k
2)hn−kek = 0

e1 = h1

qe2 = h21 − h2
We will use a blue platform with k strands to denote ek.

Theorem

(hλ, ek) = 0 if |λ| = k, unless λ = 1k.



The Elementary Symmetric Functions

Definitions

Inductively define
n∑
k=0

(−1)kq(
k
2)hn−kek = 0

e1 = h1
qe2 = h21 − h2

We will use a blue platform with k strands to denote ek.

Theorem

(hλ, ek) = 0 if |λ| = k, unless λ = 1k.



The Elementary Symmetric Functions

Definitions

Inductively define
n∑
k=0

(−1)kq(
k
2)hn−kek = 0

e1 = h1
qe2 = h21 − h2
We will use a blue platform with k strands to denote ek.

Theorem

(hλ, ek) = 0 if |λ| = k, unless λ = 1k.



The Elementary Symmetric Functions

Definitions

Inductively define
n∑
k=0

(−1)kq(
k
2)hn−kek = 0

e1 = h1
qe2 = h21 − h2
We will use a blue platform with k strands to denote ek.

Theorem

(hλ, ek) = 0 if |λ| = k, unless λ = 1k.



Diagrammatics for the Bilinear Form

Idea of Proof

Show that

(hmx, en) =

{
(x, en−1) if m = 1
0 otherwise

Use strong induction on n to find (hmx, ekhn−k)

By definition:

(−1)n+1q(
n
2)(hmx, en) =

n−1∑
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(−1)kq(
k
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Diagrammatics for the Bilinear Form

Idea of Proof

k n− k

m
∗ ∗ ∗ ∗ ∗

x

There are two cases to consider by the inductive hypothesis
applied to k < n. Either there is a strand connecting hm
and ek, or there is not.



Diagrammatics for the Bilinear Form

Idea of Proof

k

m

n− k −m

k n− k

m
∗ ∗ ∗ ∗ ∗

x

If no strand connects hm and ek.
This contributes qkm(x, ekhn−k−m) .



Diagrammatics for the Bilinear Form

Idea of Proof

k − 1

m − 1

n − k − m + 1

k n− k

m
∗ ∗ ∗ ∗ ∗

x

If a strand connects hm and ek.
This contributes q(k−1)(m−1)(x, ek−1hn−k−m+1).



Summary of Diagrammatic Rules for any q

Theorem

(en, en) = q−(n2)

Diagammatics

There is at most one strand connecting an orange (h)
platform and a blue (e) platform.

There is a sign as given above when n strands connect
two blue platforms.
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Relations and the Center

Theorem

hn1 is in the center of NΛq, if qn = 1.

(h1112, e4x) = (h2111, e4x)

. . . . . .

Other Relations (for q3 = 1)

v1 = h11211 + h12111 + h21111
v2 = h1122 − 2h1221 + 3h2112 + h2211
v3 = 2h1131 − 2h114 + 2h1311 − 2h141 + 3h222 + 2h1113 − 2h411
v1 + q2v2 + qv3 = 0
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q-divided Difference Operators

Definition

The ring of q-symmetric polynomials (qPola):
Z〈x1, x2, ..., xa〉/〈xjxi − qxixj = 0 if j > i〉

We now define the linear q-divided difference operators:

∂i(1) = 0
∂i(xi) = q
∂i(xi+1) = −1
∂i(xj) = 0 if j 6= i, i+ 1

ri(xi) = qxi+1

ri(xi+1) = q−1xi
ri(xj) = qxj if j > i+ 1
ri(xj) = q−1xj if j < i

Leibniz Rule: ∂i(fg) = ∂i(f)g + ri(f)∂i(g)
Note that these definitions account for the odd case as well.
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Properties of the q-divided Difference Operators

Lemma

∂i(xjxi − qxixj) = 0 for j > i.

As a consequence, ∂i descends to an operator on qPola
We have the following properties of the q-divided difference
operators:
∂2i = 0
∂i∂j = q∂j∂i when i > j + 1
∂i∂j = q−1∂j∂i when i < j
∂i(x

m
i x

m
i+1) = 0 for any positive integer m

∂i(x
k
i ) =

k−1∑
j=0

qjk−2j−j
2+kxjix

k−1−j
i+1

∂i(x
k
i+1) = −

k−1∑
j=0

q−jxjix
k−1−j
i+1
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Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

ek(x1, . . . , xn) =
∑

1≤i1<...<ik≤n
xi1 · · ·xin

and the k-th twisted elementary q-symmetric polynomial:

ẽk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n
x̃i1 · · · x̃in ,

where x̃j = qj−1xj .
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ẽk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n
x̃i1 · · · x̃in ,

where x̃j = qj−1xj .



Properties of the q-divided Difference Operators

Theorem

∂i(ẽk) = 0.
Hence Λ̃qn ⊆

⋂n−1
i=1 ker(∂i).
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i=1 ker(∂i) ⊆ Λ̃qn.
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More properties

nilHecke Relations

∂ixi − qxi+1∂i = q
∂ixi+1 − 1

qxi∂i = −1

Braiding Relation
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